检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈骏[1] 刘晓利[1] CHEN Jun;LIU Xiaoli(National Key Laboratory of Transient Physics, Nanjing University of Science and Technology, Nanjing 210094, China)
机构地区:[1]南京理工大学瞬态物理国家重点实验室,南京210094
出 处:《计算机工程与应用》2017年第1期163-167,177,共6页Computer Engineering and Applications
摘 要:针对传统Grabcut算法依赖人工互动,分割效率低的缺点,提出一种基于微分计盒快速算法的Differential Box-Counting Grabcut(DBC-Grabcut)方法,实现复杂自然背景下的人工目标自动分割。应用微分计盒快速算法检测出人工目标的轮廓,进而确定出Grabcut的初始分割轮廓和混合高斯模型参数,运用最小割方法分割图像,再通过少量的迭代使能量函数最小化完成目标分割。实验结果表明,该算法能够自动分割出人工目标,且分割结果较为完整,能充分保留目标的原始信息。In view of the disadvantages of traditional Grabcut algorithm rely on human interaction with low efficiency insegmentation, an improved Grabcut algorithm based on the fast differential box- counting method is proposed. It cansegment the artificial targets under the complex natural background autonomously. The contour of the artificial targets isdetected through fast differential box-counting method, then the initial rectangle and the parameters of Gaussian MixtureModel needed in the Grabcut can be obtained. Utilizing the min cut method to segment the pixels of image, and the targetis segmented by energy minimization through several iterations. Experimental results show that the proposed algorithmcan segment the artificial target relatively complete under the complex natural background, and can reserve the target’soriginal information sufficiently.
关 键 词:图像分割 目标检测 Grabcut算法 人工目标 微分计盒算法 图割
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229