检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:傅俊鹏[1] 陈秀宏[1] 葛骁倩 FU Junpeng;CHEN Xiuhong;GE Xiaoqian(School of Digital Media, Jiangnan University, Wuxi, Jiangsu 214122, China)
出 处:《计算机科学与探索》2017年第1期124-133,共10页Journal of Frontiers of Computer Science and Technology
基 金:国家自然科学基金~~
摘 要:特征选取和子空间学习是人脸识别的关键问题。为更准确选取人脸中丰富的非线性特征,并解决小样本问题,提出了一种新的L_(2,1)范数正则化的广义核判别分析(generalized kernel discriminant analysis based on L_(2,1)-norm regularization,L21GKDA)。利用核函数将原始样本隐式地映射到高维特征空间中,得到广义核Fisher鉴别准则,再利用一种有效变换将该非线性模型转化为线性回归模型;为了能使特征选取和子空间学习同时进行,在模型中加入了一种L_(2,1)范数惩罚项,并给出该正则化方法的求解算法。因为方法借助于L_(2,1)范数惩罚项的特征选取能力,所以它能有效地提高识别率。在ORL、AR和PIE人脸库上的实验结果表明,新算法能有效选取人脸的非线性特征,提高判别能力。Feature selection and subspace learning are two key problems in face recognition. To select the rich nonlinear features more accurately in face image and solve the small sample size problem, this paper proposes a new generalized kernel discriminant analysis based on L2,1 - norm regularization (L21GKDA). The proposed method implicitly maps the original samples into feature space by using kernel function, and obtains the generalized kernel Fisher criterion.Then it presents an efficient transformation, transforming its nonlinear model into linear regression model. In order toperform feature selection and subspace learning simultaneously, an L2,1 -norm penalty term is added to the objective function, and the solution algorithm of the regularization method is also obtained. Due to the feature selection capability of L2,1 -norm penalty term, the recognition performance is greatly improved. Experiments on ORL, AR, PIE standard face databases illustrate that the new method can effectively select the nonlinear features of the face data, and improve the discriminant ability.
关 键 词:人脸识别 特征选取 子空间学习 L2 1范数 核判别分析
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.147.140.129