变系数时间分数阶子扩散方程的数值解  

Numerical method for time fractional sub-diffusion equation with variable coefficients

在线阅读下载全文

作  者:罗卫华[1] 吴国成[1] LUO Weihua;WU Guocheng(College of Mathematics and Information Sciences/Data Recovery Key Laboratory of Sichuan Province, Neijiang Normal University, Neijiang, Sichuan 641112, China)

机构地区:[1]内江师范学院数学与信息科学学院/四川省数据恢复重点实验室,四川内江641112

出  处:《计算机工程与应用》2017年第4期75-78,共4页Computer Engineering and Applications

基  金:国家自然科学基金(No.11301257);四川省教育厅重点项目基金(No.15ZA0288)

摘  要:对于变系数的时间分数阶子扩散方程,提出了一种数值方法,该方法在时间方向使用由Lagrange插值函数所得的递推公式,在空间方向,利用二次样条插值函数做为基函数,构成了最优紧二次样条配置法。理论分析和数值例子证明了该方法在配置点处具有超收敛性。For the time fractional sub-diffusion equation with variable coefficients, a numerical method is presented, Along the time direction, this method is constructed by using the recursion formula which is obtained from the use of the Lagrange interpolation function, along the space direction, the quadratic spline interpolation functions are used as the basis functions,and the compact optimal quadratic spline collocation scheme is built. Theoretical analyses and numerical examples show that super-convergence in space can be achieved in the collocation points.

关 键 词:二次样条插值 分数阶子扩散方程 超收敛性 

分 类 号:O241[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象