基于成对约束的非线性维数约减框架  被引量:2

General framework for constrained dimensionality reduction

在线阅读下载全文

作  者:尹学松[1] 蒋融融[1] 江立飞[1] 施建华[1] YIN Xuesong;JIANG Rongrong;JIANG Lifei;SHI Jianhua(Department of Computer Science & Technology, Zhejiang Radio & TV University, Hangzhou 310030, China)

机构地区:[1]浙江广播电视大学计算机系,杭州310030

出  处:《计算机工程与应用》2017年第5期147-153,158,共8页Computer Engineering and Applications

基  金:浙江省公益性技术研究应用项目(No.2013C33087);浙江省高校中青年学科带头人学术攀登项目(No.pd2013446)

摘  要:半监督维数约简是指借助于辅助信息与大量无标记样本信息从高维数据空间找到一个最优低维判别空间,便于后续的分类或聚类操作,它被看作是理解基因序列、文本与人脸图像等高维数据的有效方法。提出一个基于成对约束的半监督维数约简一般框架(SSPC)。该方法首先通过使用成对约束和无标号样本的内在几何结构学习一个判别邻接矩阵;其次,新方法应用学到的投影将原来高维空间中的数据映射到低维空间中,以至于聚类内的样本之间距离变得更加紧凑,而不同聚类间的样本之间距离变得尽可能得远。所提出的算法不仅能找到一个最佳的线性判别子空间,还可以揭示流形数据的非线性结构。在一些真实数据集上的实验结果表明,新方法的性能优于当前主流基于成对约束的维数约简算法的性能。Semi-supervised dimensionality reduction refers to find the optimal low-dimensional structures from the original high-dimensional data in terms of the joint knowledge from side information and a large number of unlabeled instances. It has been regarded as an effective way to grasp the high-dimensional data such as gene sequence, text data and face images.In this paper, it develops a general framework for semi- supervised dimensionality reduction with pairwise constraints(SSPC). SSPC learns a discriminant adjacent matrix by using pairwise constraints and nearest neighbors of data. Then, it can learn a projection embedding the data from the original space to the low-dimensional space such that intra-cluster instances become even more nearby while extra- cluster instances become as far away from each other as possible. The proposed method can not only find a linear subspace which is optimal for discrimination, but also discover the nonlinear structure of the manifold. Experimental results on various real data sets demonstrate that SSPC is superior to established dimensionality reduction approaches.

关 键 词:维数约简 辅助信息 成对约束 先验隶属度 邻接矩阵 

分 类 号:TP311[自动化与计算机技术—计算机软件与理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象