RNA-seq analysis of unintended effects in transgenic wheat overexpressing the transcription factor GmDREB1  被引量:4

RNA-seq analysis of unintended effects in transgenic wheat overexpressing the transcription factor GmDREB1

在线阅读下载全文

作  者:Qiyan Jiang Fengjuan Niu Xianjun Sun Zheng Hu Xinhai Li Youzhi Ma Hui Zhang 

机构地区:[1]Institute of Crop Science,National Key Facility for Crop Gene Resources and Genetic Improvement,Chinese Academy of Agricultural Sciences,Beijing 100081,China

出  处:《The Crop Journal》2017年第3期207-218,共12页作物学报(英文版)

基  金:supported by the National Transgenic Key Project of the Ministry of Agriculture of China(2016ZX08011-003);the Agricultural Science and Technology Program for Innovation Team on Identification and excavation of Elite Crop Germplasm,CAAS

摘  要:The engineering of plants with enhanced tolerance to abiotic stresses typically involves complex multigene networks and may therefore have a greater potential to introduce unintended effects than the genetic modification for simple monogenic traits. For this reason, it is essential to study the unintended effects in transgenic plants engineered for stress tolerance. We selected drought-and salt-tolerant transgenic wheat overexpressing the transcription factor, GmDREB1, to investigate unintended pleiotropic effects using RNA-seq analysis. We compared the transcriptome alteration of transgenic plants with that of wild-type plants subjected to salt stress as a control. We found that GmDREB1 overexpression had a minimal impact on gene expression under normal conditions.GmDREB1 overexpression resulted in transcriptional reprogramming of the salt response,but many of the genes with differential expression are known to mitigate salt stress and contribute incrementally to the enhanced stress tolerance of transgenic wheat. GmDREB1 overexpression did not activate unintended gene networks with respect to gene expression in the roots of transgenic wheat. This work is important for establishing a method of detecting unintended effects of genetic engineering and the safety of such traits with the development of marketable transgenic crops in the near future.The engineering of plants with enhanced tolerance to abiotic stresses typically involves complex multigene networks and may therefore have a greater potential to introduce unintended effects than the genetic modification for simple monogenic traits. For this reason, it is essential to study the unintended effects in transgenic plants engineered for stress tolerance. We selected drought-and salt-tolerant transgenic wheat overexpressing the transcription factor, GmDREB1, to investigate unintended pleiotropic effects using RNA-seq analysis. We compared the transcriptome alteration of transgenic plants with that of wild-type plants subjected to salt stress as a control. We found that GmDREB1 overexpression had a minimal impact on gene expression under normal conditions.GmDREB1 overexpression resulted in transcriptional reprogramming of the salt response,but many of the genes with differential expression are known to mitigate salt stress and contribute incrementally to the enhanced stress tolerance of transgenic wheat. GmDREB1 overexpression did not activate unintended gene networks with respect to gene expression in the roots of transgenic wheat. This work is important for establishing a method of detecting unintended effects of genetic engineering and the safety of such traits with the development of marketable transgenic crops in the near future.

关 键 词:Unintended effects TRANSGENIC WHEAT TRANSCRIPTION factor RNA-SEQ DREB 

分 类 号:Q943.2[生物学—植物学] S512.1[农业科学—作物学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象