改进并行粒子群算法优化RBF神经网络建模  被引量:4

RBF neural network for modeling based on improved parallel particle swarm optimization

在线阅读下载全文

作  者:陆亚男[1] 南敬昌[1] 高明明[1] LU Yanan;NAN Jingchang;GAO Mingming(School of Electronics and Information Engineering, Liaoning Technical University, Huludao, Liaoning 125105, China)

机构地区:[1]辽宁工程技术大学电子与信息工程学院,辽宁葫芦岛125105

出  处:《计算机工程与应用》2017年第14期45-50,共6页Computer Engineering and Applications

基  金:国家自然科学基金(No.61372058);辽宁省高校优秀科技人才支持计划(No.LR2013012);辽宁省教育厅科学研究一般项目(No.L2015209);横向基金(No.14-2097-1)

摘  要:针对已有神经网络功放建模的建模精度不高,易陷入局部极值等问题,提出一种新的改进并行粒子群算法(Improved Parallel Particle Swarm Optimization,IPPSO)。该算法在并行粒子群算法的基础上引入自适应变异操作,防止陷入局部最优;在微粒的速度项中加入整体微粒群的全局最优位置,动态调节学习因子与线性递减惯性权重,加快微粒收敛。将该改进算法用于优化RBF神经网络参数,并用优化的网络对非线性功放进行建模仿真。结果表明,该算法能有效减小建模误差,且均方根误差提高19.08%,进一步提高了神经网络功放建模精度。Aiming at the problem that the modeling accuracy of neural network power amplifier is not high and easy tofall into local extremum,a new improved parallel particle swarm optimization algorithm(Improved Parallel ParticleSwarm Optimization,IPPSO)is proposed.The adaptive mutation operation is introduced into the improved algorithmbased on the parallel particle swarm algorithm,which avoids falling into local optimum.Meanwhile,the global optimalposition of the population is added to the speed of the particles,and it adjusts learning factor adaptively and linear decreasinginertia weight to speed up the convergence of particles.Finally,the improved algorithm is used to optimize the parametersof RBF neural network,and the network is used to model the nonlinear power amplifier.Compared with the standardparticle swarm algorithm,the root mean square error of this method is improved by19.08%,which verifies the feasibilityof the algorithm and improves the accuracy of the neural network power amplifier modeling effectively.

关 键 词:并行粒子群算法 自适应变异操作 径向基函数(RBF)神经网络 平均适应度 功放建模 

分 类 号:TP301.6[自动化与计算机技术—计算机系统结构] TP391.9[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象