检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:胡骏飞 文志强[1] 谭海湖 HU Junfei;WEN Zhiqiang;TAN Haihu(School of Computer,Hunan University of Technology,Zhuzhou Hunan 412007,China)
机构地区:[1]湖南工业大学计算机学院,湖南株洲412007
出 处:《湖南工业大学学报》2017年第1期75-80,共6页Journal of Hunan University of Technology
基 金:国家自然科学基金资助项目(61170102)
摘 要:针对手势分类问题,提出了一种基于二值化卷积神经网络的手势分类方法。根据神经网络在低精度化后仍能保持较高分类准确性和鲁棒性的特点,结合传统高精度卷积网络手势分类方法与二值化方法提出一种网络结构。并通过实验研究了隐层参数对手势分类效果的影响,并与常用的方法进行了分类性能和运行效率对比。实验结果表明,所提出的方法在N=512时的表现最佳,与其他方法相比,计算效率明显提升,且错误率接近最好的结果。A classification method based on binary convolutional neural networks has been proposed in view of some problems in current gesture classification.Based on the characteristics of neural networks,which can keep a relatively high degree of accuracy and robustness in classification even under a low precision,a proposal has been made of a new network structure with the traditional high-precision classification method of convolutional networks and the binary classification method combined together.In the process of the experiment,a research has been conducted on the effect of hidden layer parameters on the hand gesture classification,followed by a comparison between the classification performance and the operational efficiency of the conventional classification methods.The experimental results show that the proposed method has the best performance when N=512.Compared with other methods,its computational efficiency has been significantly improved,with its error rate close to the best result.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.119.110.128