检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:许元斌 李国辉[2,3] 郭昆[2,3] 郭松荣 林炜[2,3] XU Yuanbin;LI Guohui;GUO Kun;GUO Songrong;LIN Wei(State Grid Electic Power Company, Fuzhou 350001, China;College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350116, China;Fujian Provincial Key Laboratory of Network Computing and Intelligent Information Processing, Fuzhou 350116, China)
机构地区:[1]国网信通亿力科技有限责任公司,福州350001 [2]福州大学数学与计算机科学学院,福州350116 [3]福建省网络计算与智能信息处理重点实验室,福州350116
出 处:《计算机工程与应用》2017年第17期260-265,共6页Computer Engineering and Applications
基 金:国家自然科学基金(No.61300104);福建省科技创新平台建设(No.2009J1007);福建省自然科学基金(No.2013J01230);福建省高校杰出青年科学基金(No.JA12016);福建省高等学校新世纪优秀人才支持计划(No.JA13021)
摘 要:电力企业通常根据电力负荷数据,采用传统的K-Means算法对客户进行划分,而这种方法最大的缺陷就是必须由用户手动指定聚类簇数。提出了一种将Canopy算法和K-Means算法结合应用于负荷聚类的方法,无需手动指定聚类簇数。收集到的用户历史用电数据,使用并行计算框架Map Reduce对原始数据进行预处理。应用Canopy和K-Means算法建立自动负荷聚类模型。在真实用电数据上进行实证分析,通过使用Silhouette指标对结果进行评估,证明提出的方法更加稳定和具有广泛的适用性。The electrical power enterprise usually based on power load data,uses the traditional K-Means algorithm to classify the customers,but the biggest drawback of this method must be specified by the user manual clustering number of clusters.It proposes a method combining Canopy algorithm and K-Means algorithm based on load clustering,without the need to manually specify the number of clusters,the automatic division of the customer.First of all,it collects users’electricity data,uses the parallel computing framework MapReduce to preprocess the original data.Then,it uses Canopy and K-Means algorithm to establish the clustering model of automatic load.Finally,in the real consumption data on the empirical analysis,by using the Silhouette index to evaluate,it shows that the proposed method is more stable and convenient,and has wider applicability.
关 键 词:负荷聚类 并行计算 CANOPY K-MEANS
分 类 号:TP311[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222