基于1-norm SVM权值学习的多示例目标跟踪  

Multiple instance object tracking algorithm based on 1-norm SVM weight distribution

在线阅读下载全文

作  者:詹金珍[1] 滑维鑫 乔芸 ZHAN Jinzhen;HUA Weixin;QIAO Yun(Ming De College, Northwestern Polytechnical University, Xi’an 710124, China;School of Automation, Northwestern Polytechnical University, Xi’an 710072, China;Company of Shaanxi, China Mobile Limited, Xi’an 710074, China)

机构地区:[1]西北工业大学明德学院,西安710124 [2]西北工业大学自动化学院,西安710072 [3]中国移动通信集团陕西有限公司,西安710074

出  处:《计算机工程与应用》2017年第19期204-210,共7页Computer Engineering and Applications

摘  要:针对复杂场景下目标跟踪存在鲁棒性低,容易发生跟踪漂移的问题,提出一种改进的多示例目标跟踪算法。该算法针对多示例跟踪算法在包概率计算过程中忽略样本间的差异,对所有样本赋予相同权值,造成分类器性能下降及弱分类器选择存在复杂度高的问题,通过1-norm SVM计算各样本对包概率的重要程度,并在弱分类器选择过程采用内积的方法计算包概率的似然函数,从而减小算法的复杂度和计算时间。实验结果表明,该算法在目标发生遮挡、姿势变化、场景光照发生较大变化以及出现相似目标等较强干扰的情况下仍能较好地跟踪目标,具有较强的鲁棒性和抗干扰能力。For the poor robustness and target drift problem of the most existing tracking algorithms in complex environment,an improved target tracking algorithm based on multiple instance learning is proposed.The MIL tracker ignores thedifferences of each sample in the process of computing the bag probability,which declines the performance of classifier,and there exists complex problem in choosing the weak classifier.This paper solves these problems by computing theimportance of each sample to bag probability based on the1-norm SVM method.Then,it adopts inner product method tocompute the log-likelihood of bag in the process of choose weak classifier,which is benefit to reduce the computingcomplexity.Experimental results show that the proposed algorithm performs well with strong robustness and high trackingaccuracy under the complicated environments such as occlusion,rotation,pose and illumination change.

关 键 词:多示例学习 1-normSVM 分类器 目标跟踪 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象