检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:孙娇娇[1] 芮绍平[1] 张杰[1] SUN Jiaojiao;RUI Shaoping;ZHANG Jie(School of Mathematical Sciences,Huaibei Normal University,Huaibei 235000,China)
机构地区:[1]淮北师范大学数学科学学院,安徽淮北235000
出 处:《苏州市职业大学学报》2017年第3期50-54,共5页Journal of Suzhou Vocational University
基 金:安徽省自然科学基金资助项目(1508085SMA204)
摘 要:假定标的资产价格由混合双分数布朗运动驱动时,考虑在买卖期权交易过程中支付红利时欧式看涨期权的价值。在离散时间情景下,运用自融资风险对冲思想得到期权价值满足的偏微分方程。为了便于求解,通过Mellin变换将偏微分方程转变为一般的常微分方程,结合欧式看涨期权的终端条件,最终得到偏微分方程的解析解,即欧式看涨期权定价公式。Assuming that the price of the underlying asset is driven by mixed bi-fractional Brownian motion,this paper considers the value of a European call option with paying dividends in the trade process of buyingand selling options.By a self-financing risk hedging argument in a discrete-time setting,the partial differentialequation for the option value is obtained.In order to facilitate is solution,the partial differential equation istransformed into ordinary differential equation through Mellin transform.Combined with the terminal conditionsof the European call option,the analytic solution for the partial differential equation is derived.The pricingformula of the European call option with dividends under mixed bi-fractional Brownian motion is obtained.
关 键 词:Mellin变换 混合双分数布朗运动 欧式期权 风险对冲 解析解
分 类 号:O211.6[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49