检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:阚子云[1] 彭海军[1] 陈飙松[1] Kan Ziyun;Peng Haijun;Chen Biaoshong(State Key Laboratory of Structural Analysis for Industrial Equipment,Department of Engineering Mechanics,Dalian University of Technology,Dalian 116024,China)
机构地区:[1]大连理工大学工程力学系工业装备结构分析国家重点实验室,辽宁大连116024
出 处:《力学学报》2017年第5期1103-1114,共12页Chinese Journal of Theoretical and Applied Mechanics
基 金:国家自然科学基金(11472069;11772074;91648204);国家重点研发计划(2016YFB0200702)资助项目
摘 要:弹簧-阻尼-作动器(spring-damper-actuator,SDA)是多体系统中常见的力元,在工程领域中有着广泛的应用.采用绝对坐标方法建立的多体系统动力学控制方程通常是复杂的非线性微分-代数方程组.为了保证数值解的精度和稳定性,通常需要采用隐式算法求解动力学方程,而雅可比矩阵的计算在隐式数值求解过程中至关重要.对于含有SDA的多体系统,SDA造成的附加雅可比矩阵是与广义坐标和广义速度相关的高度非线性函数.目前的很多研究工作专注于广义力向量的计算,然而对附加雅克比矩阵的计算则少有关注.针对含SDA的多刚体系统进行动力学分析,首先基于Newmark算法研究其在动力学方程求解中的雅可比矩阵的构成形式;然后推导SDA的广义力向量对应的附加雅可比矩阵,其中包括广义力向量对广义坐标和对广义速度的偏导数矩阵.最后通过两个数值算例研究附加雅可比矩阵对动力学分析收敛性的影响;数值分析表明:当SDA的刚度、阻尼和作动力数值较大时,SDA导致的附加雅可比矩阵对数值解的收敛性有重要影响;当考虑SDA对应的附加雅可比矩阵时,动力学分析可以以较少的迭代步实现收敛,从而减少分析时间.The spring-damper-actuator(SDA)is a common force element in multibody system and widely used in thefield of engineering.The governing equations of multibody dynamic system established by absolute coordinate methodsare differential-algebraic equations which are usually nonlinear and complex.To ensure the stability and accuracy of thenumerical solutions,the implicit algorithms are commonly used to solve the dynamic equations.While the calculationsof Jacobian matrices are the crucial process in implicit algorithms.For a multibody system containing the SDA,the additionalJacobian matrices induced by the SDA are highly nonlinear functions of the generalized coordinates and generalizedvelocities.A lot of current research works focus on the calculation of generalized force vector,however the calculationsof additional Jacobian matrices are less concerned.This paper focuses on dynamic analysis of multi-rigid-body systems containing the SDA.Firstly,the construction of the accurate Jacobian matrices in solving the dynamic equations is investigatedbased on the Newmark algorithm.Then,the additional Jacobian matrices relating to the generalized force vector ofthe SDA are analytically derived.These matrices consist of the partial derivative of generalized force vector with respectto the generalized coordinates and the generalized velocities.Finally,the influence of additional Jacobian matrices on theconvergence of dynamic analysis is investigated via two numerical examples.The numerical results indicate that whenthe values of stiffness,damping and active force are large,the additional Jacobian matrices induced by the SDA have asignificant influence on the convergence of dynamic analysis.When the additional Jacobian matrices induced by the SDAare taken into account,the dynamic analysis can achieve convergence with less iteration steps and the computational timethus can be reduced.
关 键 词:弹簧阻尼作动器 雅可比矩阵 多体系统 隐式算法 张拉整体结构
分 类 号:O313.7[理学—一般力学与力学基础]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.155