检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国矿业大学(北京)化学与环境工程学院,北京100083 [2]中国食品发酵工业研究院,北京100015 [3]全国食品发酵标准化中心,北京100015
出 处:《食品与发酵工业》2018年第2期187-193,共7页Food and Fermentation Industries
基 金:国家自然科学基金(31601553和31601580);北京市科技新星计划(xx2016B079);科技部"十三五"重大科技计划(2016YFF0203903);欧盟地平线2020(635690-OLEUM-2020-SFS-2014-2015);科技部国际合作项目(2015DFA31720)
摘 要:为了探讨非目标指纹图谱技术验证中国葡萄酒原产地的可行性,采用一维核磁共振氢谱(1H NMR)技术,对沙城、昌黎和昌吉三大特色原产地葡萄酒的224个样品进行分析。结果表明,主成分分析(principal component analysis,PCA)结合线性判别分析(linear discriminant analysis,LDA)建立的留一交叉验证模型,实现对沙城、昌黎和昌吉葡萄酒原产地样品准确识别率为92%,73%和68%;为避免PCA/LDA模型出现过拟合现象,采用外部重复双随机交叉验证方法对PCA/LDA模型的有效性进行验证。葡萄酒1H NMR指纹图谱包含葡萄酒原产地特征信息,通过多变量统计分析可以构建非目标1H NMR指纹图谱的中国葡萄酒产地验证技术模型。Herein,the feasibility of discriminating Chinese wines from different geographical origins using nontargeted ~1H NMR fingerprinting was investigated. 224 wine samples from three distinctive geographical origins(Shacheng,Changli and Changji) were measured. Principal component analysis(PCA) combined with linear discriminant analysis(LDA) using internal leave one-out cross validation were employed to establish the discrimination model of the three geographical origins. Accuracy of classification of wine samples from Shacheng,Changli and Changji were 92%,73%,68%,respectively. In order to avoid the overfitting,repeated double random cross validation methods were used to verify the validity of the PCA/LDA model. This study suggested that ~1H NMR fingerprinting of wines contained the geographical origin feature information,the non-targeted ~1H NMR fingerprinting model for verifying Chinese wines based on their geographical origins could be constructed by multivariate statistical analysis technology.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28