基于贝叶斯模型的驾驶行为识别与预测  被引量:5

Driving behavior recognition and prediction based on Bayesian model

在线阅读下载全文

作  者:王新胜[1] 卞震 WANG Xinsheng;BIAN Zhen(School of Computer Science and Communication Engineering, Jiangsu University, Zhenjiang 212013, China)

机构地区:[1]江苏大学计算机科学与通信工程学院,江苏镇江212013

出  处:《通信学报》2018年第3期108-117,共10页Journal on Communications

基  金:国家自然科学基金资助项目(No.U1764263)~~

摘  要:针对智能驾驶系统处理大量驾驶数据时出现的效率和精度不足的问题,提出一种基于贝叶斯模型来处理驾驶数据,识别和预测人类驾驶行为的方法。该方法可以无监管地通过驾驶数据对应地推断出具体驾驶行为,共分为2步:第一步,通过贝叶斯模型分割算法将惯性传感器收集到驾驶数据分割为近线性分段;第二步,通过LDA拓展模型将线性分段聚集为具体的驾驶行为(如制动、转弯、加速和惯性滑行)。离线实验和在线实验结果表明,在处理大量驾驶数据的情况下,该方法效率和识别精度更高。Since the existing intelligent driving systems are lack of efficiency and accuracy when processing huge number of driving data,a brand new approach of processing driving data was developed to identify and predicate human driving behavior based on Bayesian model.The approach was proposed to take two steps to deduce the specific driving behavior from driving data correspondingly without any supervision,the first step being using Bayesian model segmentation algorithm to divide driving data that inertial sensor collected into near-linear segments with the help of Bayesian model segmentation algorithm,and the second step being using extended LDA model to aggregate those linear segments into specific driving behavior(such as braking,turning,acceleration and coasting).Both offline and online experiments are conducted to verify this approach and it turns out that approach has higher efficiency and recognition accuracy when dealing with numerous driving data.

关 键 词:驾驶数据 贝叶斯模型 惯性传感器 线性分段 

分 类 号:TP393[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象