检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨红叶[1] 高军伟[1,2] YANG Hong-ye;GAO Jun-wei
机构地区:[1]青岛大学自动化与电气工程学院,青岛266071 [2]北京交通大学轨道交通控制与安全国家重点实验室,北京100044
出 处:《制造业自动化》2018年第3期92-96,共5页Manufacturing Automation
基 金:山东省自然科学基金项目(ZR2015FM015);山东省重点研发计划(2017GGX10115)
摘 要:针对提取滚动轴承故障特征向量信号和识别故障类型的问题,为了提高诊断准确率,提出了基于小波包分析与BP算法权值修正的Elman神经网络的策略。基于MATLAB强大的数值分析功能,采集到的故障信号经过小波包分解与重构获取能反映不同故障状态的本征模态函数(Intrinsic modal function,IMF)分量。通过Elman神经网络辨识技术,将各频带能量作为Elman网络输入变量,测试样本为输出变量。对Elman神经网络进行大量数据训练,对滚动轴承的故障数据进行识别。实验表明,这种方法比BP神经网络识别更准确、更有效。
关 键 词:滚动轴承 特征提取 故障识别 小波包 ELMAN神经网络
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.133.144.147