检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:董志翔 赵宜升[1] 黄锦锦[1] 陈梦嘉 陈忠辉[1] Dong Zhixiang;Zhao Yisheng;Huang Jinjin;Chen Mengjia;Chen Zhonghui(College of Physics and Information Engineering,Fuzhou University,Fuzhou 350116,China)
机构地区:[1]福州大学物理与信息工程学院,福建福州350116
出 处:《电子技术应用》2018年第4期117-121,共5页Application of Electronic Technique
基 金:国家自然科学基金(U1405251);福建省自然科学基金(2015-J05122;2015J01250)
摘 要:针对高速铁路通信系统,研究快速时变信道预测问题。通过引入支持向量机(SVM)模型,提出一种信道预测算法。通过求解二次优化问题,得到SVM的预测最优超平面,并通过循环迭代实现多步预测。为了进一步提高预测准确度,采用遗传算法(GA)对SVM模型的惩罚系数和高斯核宽度进行优化。仿真结果表明,与传统的自回归(AR)以及单一的SVM预测模型相比,所提出的同时考虑SVM和GA(SVM-GA)的预测模型具有较低的预测误差。此外,当考虑噪声对预测性能影响时,SVM-GA预测模型在归一化均方误差性能方面也优于AR和SVM模型。In this paper,the problem of fast time-varying channel prediction is investigated in high-speed railway communication systems.A channel prediction algorithm is proposed based on a Support Vector Machine(SVM)model.By solving a quadratic optimization problem,the optimal hyperplane for prediction of the SVM is obtained.Moreover,the multi-step prediction is realized through cyclic iteration.In order to further improve the prediction accuracy,the penalty coefficient and Gaussian kernel width of the SVM model are optimized by a Genetic Algorithm(GA).Simulation results show that the proposed prediction model based on both the SVM and the GA(SVM-GA)has lower prediction error than traditional Autoregressive(AR)and single SVM prediction models.In addition,when the effect of the noise on prediction performance is considered,the SVM-GA prediction model is superior to the AR and the SVM models in terms of normalized mean squared error.
分 类 号:TN911.23[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3