一种新颖的电容层析成像数据采集滤波算法  被引量:3

A Novel Filtering Algorithm of Data Acquisition for Electrical Capacitance Tomography

在线阅读下载全文

作  者:杨婷 陈德运[1] 王莉莉[1] YANG Ting;CHEN De-yun;WANG Li-li(School of Computer Science and Technology,Harbin University of Science and Technology,Harbin 150080,China)

机构地区:[1]哈尔滨理工大学计算机科学与技术学院,黑龙江哈尔滨150080

出  处:《哈尔滨理工大学学报》2018年第2期12-17,共6页Journal of Harbin University of Science and Technology

基  金:国家自然科学基金(60572153;60972127);高等学校博士学科点专项科研基金(200802140001);黑龙江省自然科学基金(QC2012C059);哈尔滨市科技创新人才研究专项资金(2014RFXXJ022);黑龙江省教育厅科学技术研究项目(11541040;12531094)

摘  要:针对电容层析成像ECT(electrical capacitance tomography)数据采集系统对采集精度和实时性要求,在分析ECT数据采集系统的滤波算法基础上,根据卡尔曼滤波和小波变换的特点,提出了一种基于小波变换和卡尔曼滤波的滤波算法。该算法首先将采集数据的信号经过多小波预处理得到平稳的观测数据,然后用噪声统计值估计器估计噪声统计值,以确保信号的稳定性和收敛性,最后经卡尔曼滤波以得到信号更加精准。仿真实验结果表明:与卡尔曼算法相比,本算法去噪效果更佳,得到的信号更精准可靠,提高了ECT数据采集系统数据采集精度,为ECT数据采集系统提供了一种新颖的滤波方法。On the basis of analyzing the filtering algoritlim of ECT data acquisition system,according to the characteristics of Kalman filter and wavelet transform,a filtering algorithm based on the characteristics filtering and wavelet transform is proposed about the acquisition accuracy and real-time requirement of electrical capacitance tomography ECT(Electrical Capacitance Tomography)data acquisition system.This algorithm first makes signal acquired data processed by multi wavelet to obtain stable observed data,then estimates the noise statistics by noise statistical estimator to ensure the stability and convergence of the signal.Finally,cexe get the signal more accurately by Kalman filtering.The simulation experiment results show that better denoising effect compared with the Kalman filter algorithm which can obtain the signal more precisely and reliably and improve the data acquisition precision of ECT data acquisition system.It provides a novel filtering metiiod for ECT data acquisition system.

关 键 词:电容层析成像 数据采集 多小波变换 卡尔曼滤波 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象