基于多尺度特征融合CNN模型的车辆精细型号识别  被引量:6

Fine-grained recognition of vehicle model using multi-scale feature fusion CNN

在线阅读下载全文

作  者:刘廷建 顾乃杰[1,2,3] 张孝慈 林传文[3] LIU Tingjian;GU Naijie;ZHANG Xiaoci;LIN Chuanwen(School of Computer Science and Technology,University of Science and Technology of China,Hefei 230027,China;Anhui Province Key Laboratory of Computing and Communication Software,University of Science and Technology of China,Hefei 230027,China;Institute of Advanced Technology,University of Science and Technology of China,Hefei 230027,China)

机构地区:[1]中国科学技术大学计算机科学与技术学院,合肥230027 [2]中国科学技术大学安徽省计算与通信软件重点实验室,合肥230027 [3]中国科学技术大学先进技术研究院,合肥230027

出  处:《计算机工程与应用》2018年第18期154-160,共7页Computer Engineering and Applications

摘  要:车辆精细型号是车辆识别的主要线索之一,也是智能交通系统的重要组成部分。针对车辆精细型号种类繁多、车辆所处环境复杂多变等因素,提出一种基于多尺度特征融合的车辆精细型号识别方法。该方法基于传统的卷积神经网络,通过提取并融合来自网络底层和高层的车辆特征,完成对车辆精细型号的识别。与其他基于卷积神经网络的车辆精细型号识别方法相比,该方法在提高分类准确率的同时还大幅度降低了整体网络的参数规模。实验结果表明,在公开数据集Comp Cars的监控场景下其识别精度达到了98.43%,且模型参数大小仅为3.93 MB,平均每张图片只需0.83 ms的分类时间。The fine-grained vehicle model is one of the main clues for vehicle recognition and an important part of the intelligent transportation system.A multi-scale feature fusion Convolutional Neural Network(CNN)model is proposed,which aims to solve the recognition difficulty caused by the wide variety of vehicle models and the complex and changeable environment.This method is based on the traditional CNN.It can accomplish the fine-grained recognition of the vehicle model by extracting and fusing vehicle features from the bottom layer and the top layer of the network.Compared with other recognition methods based on CNN,the proposed method can significantly reduce the size of network parameters while improving the classification accuracy.Using the public dataset CompCars,the experimental results show that the method reaches a recognition accuracy of 98.43%,and the model parameter size is only 3.93 MB.The average recognition time for each image is 0.83 ms.

关 键 词:车辆精细型号识别 卷积神经网络 多尺度特征融合 深度学习 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象