检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:董帅 吴华[1] DONG Shuai;WU Hua(College of Sciences,Shanghai University,Shanghai 200444,China)
机构地区:[1]上海大学理学院,上海200444
出 处:《应用数学与计算数学学报》2018年第3期675-685,共11页Communication on Applied Mathematics and Computation
基 金:国家自然科学基金资助项目(11571225)
摘 要:采用广义多项式混沌-谱方法求解系数随机的Burgers方程.首先,在随机方向上对随机过程和随机系数进行多项式混沌展开,采用随机Galerkin方法将随机Burgers方程化为确定性的非线性微分方程组;然后,对该方程组,在空间方向上采用Legendre-Galerkin-Chebyshev-collocation方法,对非线性项采用Chebyshev-Gauss-Lobatto点上的Legendre插值,在时间方向上采用二阶Crank-Nicolson/leapfrog格式,以保证时间方向达到二阶精度.最后,分析了该方法求解系数随机的Burgers方程的均方收敛性,并给出了数值结果.In this paper,we solve the Burgers equation with a random coefficient by the generalized polynomial chaos expansion and spectral method.Firstly,in the random direction,the stochastic process and the random coefficient can be expanded by the generalized polynomial chaos.Then,the stochastic equation can be transformed to a system of nonlinear equations by the stochastic Legendre-Galerkin method.The Legendre-Galerkin-Chebyshev-collocation scheme is used in the direction of space,that is,the nonlinear term is interpolated through the Chebyshev-Gauss-Lobatto points.In the direction of time,to ensure the second order accuracy,the second-order Crank-Nicolson/leapfrog scheme is used.Finally,the numerical results are given,and we analyse the mean square convergence of this method.
关 键 词:随机系数 广义多项式混沌 随机Legendre-Galerkin方法 Legendre-Galerkin-Chebyshev-collocation方法 均方收敛性
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.137.152.81