检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:贾涵 连晓峰[1] JIA Han;LIAN Xiaofeng(School of Computer and Information Engineering,Beijing Technology and Business University,Beijing 100048,China)
机构地区:[1]北京工商大学计算机与信息工程学院,北京100048
出 处:《计算机工程与应用》2018年第22期16-22,共7页Computer Engineering and Applications
基 金:轨道交通控制与安全国家重点实验室(北京交通大学)开放课题基金项目(No.RCS2015K005);2017年北京工商大学两科基金培育项目(No.LKJJ2017-23)
摘 要:布谷鸟搜索算法(CS)是一种受生物启发的新型群智能优化算法。针对CS算法在搜索后期收敛速度慢并且寻优能力弱的问题,提出一种发现概率参数自适应调节的布谷鸟改进算法(APCS)。首先利用Pareto最优解计算出状态判别参数P_s,其次通过探索-开发平衡状态计算出平衡参数P_(eb),最终实现鸟蛋的被发现概率P_a的自适应动态调整。最后通过8个基准函数对两种算法的性能在10维和30维的情况下分别进行了对比与分析,结果表明,APCS算法的收敛速度、寻优能力、稳定性和计算时间都优于CS算法。Cuckoo Search algorithm(CS)is a swarm intelligence optimization algorithm which is neoteric and inspired by biology.To overcome the defections that standard algorithm has slow convergence rate and the search for algorithm optimization ability is weak,a new Adaptive Probability of Cuckoo Search algorithm(APCS)is proposed.Firstly,a parameter called state discriminant Ps is proposed and calculated by using Pareto optimal solution.Secondly,an equilibrium parameters Peb is created and calculated by exploration and exploitation equilibrium state.Finally,the adaptive dynamic adjustment of the discovery probability Pa is realized.In the end,eight benchmark functions are used to compare and analyze the performance of the two algorithms in 10 and 30 dimensions.Experiment results show that the convergence speed,optimization ability,stability and calculation time of APCS algorithm are better than those of CS algorithm.
关 键 词:布谷鸟搜索算法 收敛性 动态参数 全局搜索 基准测试
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49