检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王云超[1] 刘臻[1] WANG Yun-chao;LIU Zhen(Faculty of Education,Beijing Normal University,Beijing 100875,China)
出 处:《计算机科学》2018年第B11期412-416,共5页Computer Science
基 金:国家863科技支撑计划项目(2012AA12AA407);赛尔网络下一代互联网技术创新项目(NGII20170628)资助
摘 要:协同过滤推荐算法是目前推荐系统领域中十分常用的方法。余弦相似度和Pearson相关系数是目前协同过滤推荐算法中计算相似度的两种常用算法。为提高协同过滤推荐算法的准确性,对相似度计算问题进行了研究,针对目前常用的余弦相似度和Pearson相关系数这两种相似度计算方法的不足,通过设计和引入调节因子,分别考虑用户在评分习惯和项目选择上的差异性,以对这两种传统的相似度算法进行优化和改进。另外,考虑到用户的偏好往往与项目所具有的属性有关,设计了衡量用户对属性偏好的参数,通过加权的方式将其与改进后的相似度算法进行融合,提出了一种融合用户评分习惯、项目选择差异及属性偏好的协同过滤推荐算法。在MovieLens数据集上进行的实验表明,相比于传统算法,提出的改进算法更为精确,平均绝对误差和均方根误差得到了明显的降低。Collaborative filtering algorithm is one of the most successful and useful technologies in recommendation systems.Cosine similarity and Pearson correlation coefficient are two of the most widely used traditional algorithms to calculate the similarity in collaborative filtering algorithm.In order to reduce the error,an improved collaborative filtering recommendation algorithm was proposed in view of the disadvantages of the two traditional similarity algorithms.The two traditional algorithms were improved by importing two parameters,one of them was proposed for considering the rating habits of users,and the other was imported to measure the difference of items chosen by users.User’s preference is related to project attributes,therefore,a parameter was designed to measure it.The new algorithm was constructed by the improved traditional algorithm and user’s preference for attributes.The results of experiment on MovieLens dataset show that the proposed algorithm has lower mean absolute error(MAE)and root mean square error(RMSE),and has better performance by using the two parameters compared with traditional algorithms.
关 键 词:推荐系统 协同过滤 用户相似度 属性偏好 调节因子
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222