检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:周莉[1] ZHOU Li(College of Science,Qiqihar University,Qiqihar 161006,China)
机构地区:[1]齐齐哈尔大学理学院,黑龙江齐齐哈尔161006
出 处:《大连理工大学学报》2018年第6期649-654,共6页Journal of Dalian University of Technology
基 金:国家科技支撑计划资助项目(2013BAK12B0803);黑龙江省教育厅科学技术研究资助项目(135109229)
摘 要:研究了两个相同部件并联可修系统解的问题.利用半离散化逼近方法将抛物型偏微分方程组化为矩阵常微分方程组,即用初等阶梯函数对并联可修系统的修复率μ(x)进行逼近,使该系统转化为半离散化系统.并对该系统的动态解用C0半群理论中的Trotter定理加以证明,得到该解的收敛性.最后假设该并联系统的修复率为常数,利用Matlab软件进行数值实验,从实验图形中发现该可修系统的数值解和理论证明的结论是一致的.结果表明,离散后的常微分方程组的解收敛于原抛物型偏微分方程组的解,从而为该模型的进一步数值计算打下了基础.The problem of solving two parallel repairable systems with the same components is studied.Parabolic partial differential equations are transformed into matrix ordinary differential equations by using semi-discrete approximation method,that is,the repairability rateμ(x)of parallel repairable systems is approximated by elementary step functions.The system is transformed into a semi-discrete system.The dynamic solution of the system is proved by the Trotter theorem of semi-group theory C 0,and the convergence of the solution is obtained.Finally,assuming that the repairability rate of the parallel system is constant,the numerical solution of the repairable system is found to be consistent with the theoretical proof from experimental graph by using the Matlab software to carry out numerical experiments.The results show that the solution of the discrete ordinary differential equations converges to the solution of the original parabolic partial differential equation,thus lay foundation for further numerical calculation of the model.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.70.25