基于协同过滤算法的自动化隐式评分音乐双重推荐系统  被引量:5

An Automated Implicit Scoring Music Dual Recommendation System Based on Collaborative Filtering Algorithm

在线阅读下载全文

作  者:李涛[1] 符丁[1] Li Tao;Fu Ding(Qiannan National Minorities Normal College,Duyun 558000,China)

机构地区:[1]黔南民族师范学院,贵州都匀558000

出  处:《计算机测量与控制》2018年第11期171-175,共5页Computer Measurement &Control

基  金:黔科合J字LKQS[2013]23号;黔科合LH字[2014]7439号

摘  要:提出了基于协同过滤算法的自动化隐式评分音乐双重推荐系统;在异构普适环境推荐框架下,对系统总体结构进行设计;其中硬件部分采用四元件组成方式,使用W900710型号芯片作为播放器核心板,并将隐式评分提取器与推荐引擎结合起来,可避免噪声干扰;而软件部分设计场景模拟衰减现象,采用协同过滤算法描述衰减过程,根据描述结果,设立双重推荐机制来实现抗人为影响的音乐双重推荐系统;由实验结果可知,对于大规模音乐数据推荐具有良好可扩展性。According to the influence of the display scoring mechanism adopted by the traditional system,which is influenced by the external interference and the precision of the recommended results is low,a dual recommendation system based on collaborative filtering algorithm is proposed.Under the recommendation framework of heterogeneous ubiquitous environment,the overall structure of the system is designed.The hardware part is composed of four components,using W900710 model chip as the core of the player,and combining the implicit score extractor with the recommendation engine,the noise interference can be avoided.The software part design scene simulation attenuation phenomenon,use collaborative filtering algorithm to describe the attenuation process,according to the description results,set up a double recommendation mechanism to achieve the anti human impact of the music dual recommendation system.The experimental results show that the maximum precision of the proposed system can reach 90%,and it has good scalability for large-scale music data recommendation.

关 键 词:协同过滤 自动化 隐式评分 音乐 双重推荐 普适环境 

分 类 号:TM411[电气工程—电器]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象