最大通过能力下高速铁路运行图优化研究  被引量:5

Optimization of high-speed railway timetabling based on maximum utilization of railway capacity

在线阅读下载全文

作  者:路超[1] 周磊山[1] 陈然 LU Chao;ZHOU Leishan;CHEN Ran(School of Traffic and Transportation,Beijing Jiaotong University,Beijing 100044,China)

机构地区:[1]北京交通大学交通运输学院,北京100044

出  处:《铁道科学与工程学报》2018年第11期2746-2754,共9页Journal of Railway Science and Engineering

基  金:中国铁路总公司科技研究开发计划资助项目(KTD16011531);中央高效基本科研业务费专项资金资助项目(2014JBZ2008)

摘  要:为最大限度地利用多等级列车共存的高速铁路繁忙线路通过能力,同时保证运输质量,构建高速铁路网通过能力最大化条件下的列车运行图优化模型。根据列车运行过程中不得有冲突的特点将该问题抽象为时空网络中带约束的最大独立集问题。通过D-W分解将模型进行转化及线性松弛。采用列生成算法对有大规模决策变量的松弛问题进行求解。在松弛解的基础上设计分支定界算法求得最优可行列车最大独立运行线集。研究结果表明:所建模型具有在不同参数表示的需求场景下灵活求得兼顾运能和运输质量的有效运行图的功能。通过与求解独立集问题的常用启发式算法对比,本文方法可在保持旅行时间平均1.33%波动条件下使得通过能力值目标提高2.56%、总目标值提高4.6%。In order to maximize the capacity utilization in busy high-speed railways with mixed trains and ensuring the transportation efficiency,this paper constructs the model of train timetabling with maximum capacity.Since there must be no conflicts between trains,the problem is abstracted into constrained maximum independent set in the space-time network.The model are transformed and linearly relaxed by D-W decomposition method.Column generation is applied to solve the relaxed problem.Based on the relaxed solution a branch and bound algorithm is designed to find the optimal feasible solution.The experiment results show that the proposed method is able to flexibly find timetables with balanced capacity and efficiency under each scenario of demand specified by different parameters.Compared with general heuristic algorithm,on average,the proposed method makes effort to improve the objective value of capacity by 2.56%,the total objective value by 4.6%while holding the fluctuation of the objective value of total travel time within 1.33%.

关 键 词:高速铁路 能力利用 运行图 优化模型 

分 类 号:U292.4[交通运输工程—交通运输规划与管理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象