Fisher型方程的Jacobi谱配点法(英文)  被引量:1

Solving Fisher-type equations by Jacobi spectral collocation method

在线阅读下载全文

作  者:徐信 曾晓艳[1] XU Xin;ZENG Xiaoyan(College of Sciences,Shanghai University,Shanghai 200444,China)

机构地区:[1]上海大学理学院,上海200444

出  处:《应用数学与计算数学学报》2018年第4期741-761,共21页Communication on Applied Mathematics and Computation

基  金:supported by the National Natural Science Foundations of China(11374203,11701358)

摘  要:主要讨论了以Jacobi-Gauss-Lobatto点为配置点的谱配点法数值求解具有初边值条件的Fisher型方程.借助于插值和由此产生的微分矩阵,将Fisher型方程转化为常微分方程组,再利用四阶Runge-Kutta法求解该常微分方程组.文中以一维Fisher型方程为例证明了该方法具有谱精度,并给出了四个Fisher型方程算例.数值例子验证了Jacobi谱配点法具有高精度和快速收敛性.The aim of this paper is to obtain the numerical solutions to the Fisher-type equations with initial-boundary conditions by the Jacobi spectral collocation method using the Jacobi-Gauss-Lobatto collocation(JGLC)points.By means of the interpolation and the resulting differentiation matrix,we transfer the nonlinear partial differential equations into a system of ordinary differential equations(ODEs)that can be solved by the fourth-order Runge-Kutta method.We prove the spectral accuracy of this method for one-dimensional Fisher-type equations.Four examples of the Fisher-type equations are considered,and numerical experiments demonstrate the high accuracy and the fast convergence of the Jacobi spectral collocation method.

关 键 词:FISHER型方程 Jacobi谱配点法 Jacobi-Gauss-Lobatto(JGLC)点 

分 类 号:O241.82[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象