检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:金俊平[1] 万仲保[2] 杜军龙[1] 周剑涛 JIN Junping;WAN Zhongbao;DU Junlong;ZHOU Jiantao(Jiangxi Information Center,Nanchang 330001,China;Software College,East China Jiaotong University,Nanchang 330013,China)
机构地区:[1]江西省信息中心,南昌330001 [2]华东交通大学软件学院,南昌330013
出 处:《电讯技术》2018年第12期1441-1446,共6页Telecommunication Engineering
基 金:江西省自然科学基金项目(20171BAB206058)
摘 要:传统粒子滤波(PF)直接采用状态转移先验分布作为重要性密度函数来近似后验概率密度函数,使得后验概率密度函数未包含量测信息。针对此问题,提出了一种改进高阶容积粒子滤波(CPF)的系统状态估计算法。算法采用七阶正交容积卡尔曼滤波(7th-CQKF)对PF的粒子进行传递,使得先验分布更新阶段融入最新量测信息;通过7th-CQKF设计重要性密度函数,提高对状态后验概率密度的逼近程度;通过反比例函数计算粒子权重,突出大噪声粒子与小噪声粒子权重差别,提高粒子有效性。仿真结果表明,改进高阶容积粒子滤波的估计精度高于容积粒子滤波(CPF)。The traditional particle filter(PF)directly employs the state transition prior distribution as an importance density function to approximate the posterior density function,which makes the posterior density function does not include the latest measurement information.For this problem,an improved high-degree cubature particle filter(CPF)system state estimation algorithm is proposed.The algorithm makes use of seventh-degree Cubature Quadrature Kalman Filter(7th-CQKF)to transmit the particles of PF,and incorporates the latest measurement information into the prior updating phase.The approximating precision of state posterior density function is improved through designing importance density function with7th-CQKF.The algorithm calculates the weights of particles by inverse proportional function to lay emphasis on the weight difference between large-noise particles and little-noise particles,and enhances the effectiveness of particles.Simulation results show that the proposed algorithm has higher state estimation precision than CPF.
关 键 词:状态估计 粒子滤波 七阶正交容积卡尔曼滤波 容积粒子滤波
分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.221.172.197