基于区域增长与统一化水平集的CT肝脏图像分割  被引量:10

Liver segmentation in CT images based on region-growing and unified level set method

在线阅读下载全文

作  者:郑洲 张学昌[2] 郑四鸣[3] 施岳定 ZHENG Zhou;ZHANG Xue-chang;ZHENG Si-ming;SHI Yue-ding(Institute of Mechanical Engineering,Zhejiang University,Hangzhou 310027,China;School of Mechanical and Energy Engineering,Ningbo Institute of Technology,Zhejiang University,Ningbo 315100,China;Department of Minimally Invasive Surgery for Hepatobiliary Hernia,Ningbo Li Hui-li Hospital,Ningbo 315100,China)

机构地区:[1]浙江大学机械工程学院,浙江杭州310027 [2]浙江大学宁波理工学院机能学院分院,浙江宁波315100 [3]宁波李惠利医院肝胆疝微创外科,浙江宁波315100

出  处:《浙江大学学报(工学版)》2018年第12期2382-2396,共15页Journal of Zhejiang University:Engineering Science

基  金:国家自然科学基金资助项目(51075362);浙江省自然科学基金资助项目(LY17E050011);宁波市科技惠民资助项目(2015C50025)

摘  要:经过混合图像预处理(图像降噪、特定比例梯度滤波、非线性灰度转换和自定义二值转换)将CT图像转化为二值图像,提供良好的种子增长环境,克服传统区域增长中增长阈值设定与种子点位置选择的困难,避免过分割.区域增长只需设置少量种子点即能大致提取完整肝脏区域.通过统一化水平集优化分割结果.该水平集由图像边缘信息与区域信息共同驱动,与单图像信息驱动的水平集相比,能适应更大的气球力与更多的迭代次数,抗边缘泄漏能力强.将该方法在SLIVER07和3Dircadb提供的共40个肝脏数据集上进行验证,结果表明:相比其他多种方法,该方法所需交互时间更少,分割准确度更高.First,hybrid image preprocessing,consisting of anisotropic filter,scale-specific gradient magnitude filter,nonlinear grayscale conversion and customized binary conversion,was employed to transform the CT image into a binary image,providing a good seed growth condition.Thus,the difficulties of threshold setting and seed initial location setting encountered in conventional region-growing were overcome,and over-segmentation was avoided.A few seeds were required when region-growing was performed to roughly extract the whole liver region.The segmentation results were refined by the unified level set method,which was driven by both the edge information and the region information of the image.The unified level set is adapted to larger balloon force and more iterations compared with the level sets driven by single information,and has strong resistance to edge leakage.A total of 40 datasets from SLIVER07 and 3Dircadb were used for method validation.Results show that,compared with other methods,the proposed method needs less interaction time and can get higher segmentation accuracy.

关 键 词:区域增长 统一化水平集 CT图像 肝脏 图像分割 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术] R814.42[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象