基于迭代学习控制算法的下肢外骨骼机器人跟随特性  被引量:8

Follow-up Characteristics of Lower Limb Exoskeleton Robot Based on Iterative Learning Control Algorithm

在线阅读下载全文

作  者:杨凯歌[1] 钟佩思[1] 郑义[1,2] 倪伟[1] 刘梅[1] YANG Kai-ge;ZHONG Pei-si;ZHENG Yi;NI Wei;LIU Mei(Advanced Manufacturing Technology Center, Shandong University of Science and Technology , Qingdao 266590, China;College of Mechanical and Electrical Engineering, Qingdao Huanghai University, Qingdao 266427, China)

机构地区:[1]山东科技大学先进制造技术研究中心,青岛266590 [2]青岛黄海学院机电工程学院,青岛266427

出  处:《科学技术与工程》2018年第34期196-201,共6页Science Technology and Engineering

基  金:山东省重点研发计划(2018GGX106001);山东省高等学校科学技术计划(J18KA009);山东省高等学校科学技术计划(J16LB58);山东科技大学研究生科技创新项目(SDKDYC180334;SDKDYC180329)资助

摘  要:目前下肢外骨骼机器人存在的运动控制算法追踪人体髋关节和膝关节期望轨迹时存在误差,从而导致人机系统随动性能差。因此,提出迭代学习控制算法追踪人体髋关节和膝关节期望轨迹。首先,结合人体下肢结构分析,建立下肢外骨骼机器人动力学模型;其次,基于迭代学习控制算法建立下肢外骨骼机器人随动控制模型;最后,利用Matlab软件设计指数变增益闭环D型运动控制系统,分析收敛速度与谱半径的关系,追踪得到人体下肢髋关节和膝关节期望轨迹。仿真结果表明该算法能够有效提高下肢外骨骼机器人步态轨迹跟踪精度,提升人机系统随动性能。Currently,motion control algorithms of lower limb exoskeleton robot had errors in tracking desired trajectories of human hip and knee joints,resulting in poor follow-up performance of the human-robot system.Therefore,iterative learning control algorithm is proposed to track the desired trajectory of human hip and knee joints.Firstly,considering the analysis of lower limb human structure,the dynamic model of lower limb exoskeleton robot was established.Secondly,the follow-up control model of lower limb exoskeleton robot was established,which based on iterative learning control algorithm.Finally,the exponential gain close-loop D type motion control system was designed,and the relationship between spectral radius and the convergence speed were analyzed.The hip and knee joints expected trajectory was tracked based on Matlab software.The simulation results show that this algorithm can effectively improve the accuracy of gait trajectory tracking,and the follow-up of human-robot system is promoted.

关 键 词:下肢外骨骼机器人 迭代学习控制算法 运动控制系统 步态轨迹跟踪精度 

分 类 号:TP242.6[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象