检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张彬[1] 孙菁聪 王胜文 ZHANG Bin;SUN Jing-cong;WANG Sheng-wen(School of Science,Communication University of China,Beijing 100024,China)
出 处:《中国传媒大学学报(自然科学版)》2018年第6期14-18,共5页Journal of Communication University of China:Science and Technology
摘 要:当图像边界满足齐性Dirichlet条件时,正则化图像复原问题可归结为求解系数矩阵为含有正则化参数的线性方程组。为了更好地复原退化图像的边缘细节,选取原图像的全变差函数为正则化函数,取定适当的正则化参数,用共轭梯度法求解线性方程组而得到复原图像。仿真结果表明:与Tikhonov正则化复原方法相比较,全变差约束能更好地保留图像的细节,对模糊图像能够取得比较满意的复原效果。从GMG和LS两种客观指标也说明了这一点。When the image boundary satisfy the homogeneous Dirichlet condition,regularized image restoration can be attributed to solving a linear systems.In order to better restore the edge details of degraded image,the total variation of original image was selected as the regularization function.The regularization parameter was selected appropriately and the linear systems was solved with conjugate gradient method to get the restoration image.Simulation results show that total variation regularization method can restored the edges and details of image better than Tikhonov regularization method.Two objective indicators from GMG and LS also illustrates this point.
关 键 词:图像复原 全变差 共轭梯度法 分块Toeplitz矩阵
分 类 号:TP39141[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15