基于Faster R-CNN的办公用品目标检测  被引量:3

Office Supplies Target Detection Based on Faster R-CNN

在线阅读下载全文

作  者:房靖晶 成金勇[1] FANG Jing-jing;CHENG Jin-yong(College of Information,Qilu University of Technology(Shandong Academy of Sciences),Jinan 250353,China)

机构地区:[1]齐鲁工业大学(山东省科学院)信息学院,山东济南250353

出  处:《计算机与现代化》2019年第1期40-44,共5页Computer and Modernization

基  金:国家自然科学基金"面上"项目(21776143)

摘  要:RCNN网络与全卷积网络框架等技术使得目标检测技术能够快速发展。RCNN网络与全卷积网络框架不仅训练速度快,推断速度也十分的迅速,此外还具有良好的鲁棒性以及灵活性。在人工智能领域的发展中,提高目标检测效率的关键在于好的技术,以及得到更加有效的、深层的特征表示,通过使用深层网络的多层结构来简洁地表达复杂函数。本文用到的目标检测方法先要用区域建议网络得到建议位置再进行检测,因为Fast R-CNN和R-CNN等目标检测算法已经在运行时间方面有了很大的提高,所以计算区域建议成为目标检测的一个计算瓶颈。本文通过在算法中加入特征融合技术,将每一卷积层提取的特征进行融合,使用区域建议网络来进行候选区域提取。区域建议网络和检测网络共享全图的卷积特征,从而很大程度地缩短候选区域的提取时间,提高目标检测的精度。The technologies of RCNN network and full convolution network framework enable target detection technology to develop rapidly.RCNN networks and full convolution network frameworks are not only fast in training,but also very fast in inference speed.Besides,it has good robustness and flexibility.In the development of artificial intelligence,the key to improve the efficiency of target detection lies in good technology.We need to get a more effective and deep feature representation,which can express complex functions simply by using the multi-layer structure of deep network.The target detection method used in this paper is first to use the regional recommended network to get the proposed location and then test,because the Fast R-CNN and R-CNN target detection algorithms have been greatly improved in the running time,so the calculation area is suggested to be a computing bottle neck of the target detection.This paper joins the feature fusion technology in the algorithm,combines the features extracted from each layer of the accumulated layer,uses the regional recommended network to extract the candidate region.The regional recommendation network and the detection network share the convolution feature of the whole graph,so that the extraction time of the candidate region can be greatly shortened and the accuracy of target detection is improved.

关 键 词:目标检测 全卷积网络 区域建议网络 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象