检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:苏洁 刘帅[2] SU Jie;LIU Shuai(School of Information Science and Engineering,University of Ji′nan,Ji′nan 250022,China;School of Computer Science and Technology,Harbin University of Science and Technology,Harbin 150080,China)
机构地区:[1]济南大学信息科学与工程学院,山东济南250022 [2]哈尔滨理工大学计算机科学与技术学院,黑龙江哈尔滨150080
出 处:《哈尔滨工程大学学报》2019年第2期400-405,共6页Journal of Harbin Engineering University
基 金:哈尔滨市科技创新人才项目(2016RAQXJ163)
摘 要:为了提高细胞聚合、粘连区域的分割准确性,本文提出一种基于空间聚类和隐马尔可夫随机场的两级分割算法。以像素点颜色特征为依据,在Lab色彩空间中采用k-means++聚类方法得到初始化标签集;通过HMRF构建细胞图像的空间表达模型,充分利用空间约束关系,减少孤立点影响,平滑分割区域;采用期望最大值算法优化模型参数,利用标记场和观测场的相互作用,通过迭代算法不断调整标签集合,迭代直至收敛得到全局最优值。对来自于骨髓涂片的61幅细胞图像中的780个6类细胞的实验表明,本文算法提高了分割的准确率(不小于95%),便于进一步提取细胞病理特征,实现检测识别。A two-level segmentation algorithm based on spatial clustering and hidden Markov random field(HMRF)is proposed to improve the segmentation accuracy of cell aggregation and adhesion region.First,based on color feature of pixels in the Lab color space,k-means++clustering method is used to obtain an initialization tag set.Second,the spatial expression model of the cell image is constructed by HMRF,which fully employs the spatial constraint relation to reduce the influence of isolated points and smooth the segmentation area.Finally,the model parameters are optimized by using the expectation maximization algorithm.Through the interaction between the marker and observation fields,the label set is adjusted by the iterative algorithm.Experimental results of six kinds of 780 cells from bone marrow smears of 61 cell types show that the proposed algorithm improves the accuracy of segmentation by≥95%.Furthermore,the algorithm is convenient for further extraction,detection,and recognition of cell pathology characteristics.
关 键 词:图像分割 K均值聚类 隐马尔可夫随机场 期望最大值算法 最大后验概率
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28