Metabolic and physiological regulation of Chlorella sp.(Trebouxiophyceae, Chlorophyta) under nitrogen deprivation  

Metabolic and physiological regulation of Chlorella sp.(Trebouxiophyceae, Chlorophyta) under nitrogen deprivation

在线阅读下载全文

作  者:YONG Wai-Kuan LIM Phaik-Eem VELLO Vejeysri SIM Kae-Shin ABDUL MAJID Nazia MUSTAFA Emienour Muzalina NIK SULAIMAN Nik Meriam LIEW Kan-Ern CHEN Brenna Jia-Tian PHANG Siew-Moi 

机构地区:[1]Institute of Ocean and Earth Sciences, University of Malaya [2]Institute of Graduate Studies, University of Malaya [3]Institute of Biological Sciences, Faculty of Science, University of Malaya [4]School of Fisheries and Aquaculture Sciences, University of Malaysia [5]Department of Chemical Engineering, Faculty of Engineering, University of Malaya [6]Airbus Group Malaysia, Menara HLA [7]Aerospace Malaysia Innovation Centre

出  处:《Journal of Oceanology and Limnology》2019年第1期186-198,共13页海洋湖沼学报(英文)

基  金:Supported by the Aerospace Malaysia Innovation Centre&Airbus Group Innovation(No.PV001-2013);the Ministry of Higher Education Malaysia HICoE grant(No.IOES-2014H);the Fundamental Research Grant Scheme(No.FP048-2016);the University of Malaya UMCoE RU Grant(No.RU009H-2015)

摘  要:A freshwater green microalgae Chlorella sp., UMACC344 was shown to produce high lipid content and has the potential to be used as feedstock for biofuel production. In this study, photosynthetic effciency, biochemical pro?les and non-targeted metabolic pro?ling were studied to compare between the nitrogen-replete and deplete conditions. Slowed growth, change in photosynthetic pigments and lowered photosynthetic effciency were observed in response to nitrogen deprivation. Biochemical pro?les of the cultures showed an increased level of carbohydrate, lipids and total fatty acids, while the total soluble protein content was lowered. A trend of fatty acid saturation was observed in the nitrogen-deplete culture with an increase in the level of saturated fatty acids especially C16:0 and C18:0, accompanied by a decrease in proportions of monounsaturated and polyunsaturated fatty acids. Fifty-nine metabolites, including amino acids, lipids, phytochemical compounds, vitamins and cofactors were signi?cantly dysregulated and annotated in this study. Pathway mapping analysis revealed a rewiring of metabolic pathways in the cells, particularly purine, carotenoid, nicotinate and nicotinamide, and amino acid metabolisms. Within the treatment period of nitrogen deprivation, the key processes involved were reshu ? ing of nitrogen from proteins and photosynthetic machinery, together with carbon repartitioning in carbohydrates and lipids.A freshwater green microalgae Chlorella sp., UMACC344 was shown to produce high lipid content and has the potential to be used as feedstock for biofuel production. In this study, photosynthetic effciency, biochemical pro?les and non-targeted metabolic pro?ling were studied to compare between the nitrogen-replete and deplete conditions. Slowed growth, change in photosynthetic pigments and lowered photosynthetic effciency were observed in response to nitrogen deprivation. Biochemical pro?les of the cultures showed an increased level of carbohydrate, lipids and total fatty acids, while the total soluble protein content was lowered. A trend of fatty acid saturation was observed in the nitrogen-deplete culture with an increase in the level of saturated fatty acids especially C16:0 and C18:0, accompanied by a decrease in proportions of monounsaturated and polyunsaturated fatty acids. Fifty-nine metabolites, including amino acids, lipids, phytochemical compounds, vitamins and cofactors were signi?cantly dysregulated and annotated in this study. Pathway mapping analysis revealed a rewiring of metabolic pathways in the cells, particularly purine, carotenoid, nicotinate and nicotinamide, and amino acid metabolisms. Within the treatment period of nitrogen deprivation, the key processes involved were reshu ? ing of nitrogen from proteins and photosynthetic machinery, together with carbon repartitioning in carbohydrates and lipids.

关 键 词:metabolic profiling Chlorella sp. nitrogen stress LIPID fatty acid 

分 类 号:P[天文地球]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象