检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:谭力凡 吴俊[1,2] 曹立波[1] 廖家才[1] Tan Lifan;Wu Jun;Cao Libo;Liao Jiacai(State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body,Hunan University,Changsha 410082;Hunan Normal University,Changsha 410082)
机构地区:[1]湖南大学汽车车身先进设计制造国家重点实验室,长沙410082 [2]湖南师范大学,长沙410082
出 处:《汽车技术》2019年第2期21-25,共5页Automobile Technology
基 金:国家自然科学基金项目(51505137);汽车车身先进设计制造国家重点实验室(湖南大学)开放课题基金(31615007)
摘 要:为提供准确、实时的前方车辆位置信息,提出了一种基于AdaBoost和压缩跟踪的前方车辆检测方法。首先通过Haar-like特征及AdaBoost算法进行样本训练,获得车辆检测分类器,利用道路纵向测距模型进行感兴趣区域分割和检测窗口多尺度优化以提高检测效率,最后通过压缩跟踪算法增强环境适应性,提高检测准确率。结果表明,该方法在天气良好条件下的平均检测率为93%,每帧耗时26.5 ms,能够为具有避撞功能的车辆智能驾驶系统提供有效决策依据。A detection method of preceding vehicle method was proposed based on AdaBoost and compressive tracking algorithm to provide accurate and real-time vehicle position information.The vehicle detection classifier was obtained through sample training with Haar-like feature and AdaBoost algorithm.Segmentation of interest region and multiscale optimization of the sub-window based on the longitudinal range model were utilized to improve the efficiency of detection.The compressive tracking algorithm was used to enhance environment adaptability and improve detection accuracy.The experimental results show that the average detection accuracy of the proposed method is 93%with a speed of 26.5 ms per frame under good weather conditions,which could provide an effective decision basis for the intelligent driving system with the collision avoidance function.
关 键 词:前方车辆检测 ADABOOST算法 道路纵向测距模型 压缩跟踪
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145