机构地区:[1]Department of Geriatrics, the Affiliated Hospital of Qingdao University
出 处:《Journal of Ocean University of China》2019年第1期253-259,共7页中国海洋大学学报(英文版)
基 金:supported by grants from the National Natural Science Foundation Project of China (NSFC) (No. 31571829 and No. 31640050);the People’s Livelihood Science and Technology Project Financially Supported by Qingdao city (No. 15-9-2-75-nsh)
摘 要:Propylene glycol alginate sodium sulfate-loaded nanoparticles(PSS-NP) has been shown potential to prevent the microvascular endothelial injuries caused by diabetic cardiomyopathy(DCM). In this study, we aimed to investigate the effects of PSS-NP on the dysfunction of cardiac microvascular endothelia in streptozotocin(STZ)-induced DCM rat model. Echocardiographic measurements showed a significant improvement of cardiac function in the PSS-NP-treated group. Our results revealed that the abnormalities of cardiac systolic and diastolic functions were suppressed by the treatments of prostaglandin E1(PGE1), low molecular weight heparin(LMWH), PSS and PSS-NP. Our comparison analysis indicated that PSS-NP showed the strongest inhibitory effects on microvascular endothelial injuries. Transmission electron microscopy analysis demonstrated that PSS-NP protected the cardiac microvascular endothelium and further improved endothelium dysfunction in DCM rats. ELISA and Western blot assays further showed a high efficiency of improving cardiac microvascular endothelial dysfunction with PSS-NP. Our results demonstrated that PSS-NP increased the protein expression of phosphatidylinositol 3-kinase(PI3K)-p85 and vascular endothelial growth factor(VEGF)-A, and the phosphorylation of protein kinase B(Akt) and endothelial nitric oxide synthase(eNOS), which were involved in the amelioration of cardiac microvascular endothelial dysfunction. These data suggest that PSS-NP may be a novel approach to the treatment the coronary microcirculation disorder diseases such as DCM.Propylene glycol alginate sodium sulfate-loaded nanoparticles(PSS-NP) has been shown potential to prevent the microvascular endothelial injuries caused by diabetic cardiomyopathy(DCM). In this study, we aimed to investigate the effects of PSS-NP on the dysfunction of cardiac microvascular endothelia in streptozotocin(STZ)-induced DCM rat model. Echocardiographic measurements showed a significant improvement of cardiac function in the PSS-NP-treated group. Our results revealed that the abnormalities of cardiac systolic and diastolic functions were suppressed by the treatments of prostaglandin E1(PGE1), low molecular weight heparin(LMWH), PSS and PSS-NP. Our comparison analysis indicated that PSS-NP showed the strongest inhibitory effects on microvascular endothelial injuries. Transmission electron microscopy analysis demonstrated that PSS-NP protected the cardiac microvascular endothelium and further improved endothelium dysfunction in DCM rats. ELISA and Western blot assays further showed a high efficiency of improving cardiac microvascular endothelial dysfunction with PSS-NP. Our results demonstrated that PSS-NP increased the protein expression of phosphatidylinositol 3-kinase(PI3K)-p85 and vascular endothelial growth factor(VEGF)-A, and the phosphorylation of protein kinase B(Akt) and endothelial nitric oxide synthase(eNOS), which were involved in the amelioration of cardiac microvascular endothelial dysfunction. These data suggest that PSS-NP may be a novel approach to the treatment the coronary microcirculation disorder diseases such as DCM.
关 键 词:PSS-loaded NANOPARTICLES marine drug DCM MICROVASCULAR endothelial DYSFUNCTION
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...