检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈攀 CHEN Pan(College of Computer Science,Sichuan University,Chengdu 610065)
出 处:《现代计算机》2019年第5期60-64,78,共6页Modern Computer
摘 要:汽车测距系统在驾驶辅助系统中越来越重要,基于视觉的测距系统成本低实现简单,但精度易受算法本身的影响。提出一种基于双目视觉的实时车辆检测和车距计算的算法,算法利用类Haar特征和AdaBoost算法训练分类器进行车辆检测,提取车辆候选区域。同时,该算法提出一种基于双目系统的交叉再检测的方法降低误检。立体匹配算法方面采用一种由粗到精的匹配策略,提高双目测距算法的精度和性能。实验结果表明该方法具有精度高、鲁棒性强的优点。Ranging system on vehicle is widely used in driving assistance system.Vision-based ranging system has the advantages of lower cost and easier implementation.However,its accuracy depends on the algorithm itself.Proposes a real-time vehicle detection and inter-vehicle distance estimation algorithm based on binocular vision system.The method uses Haar-like features and AdaBoost algorithm to run a classifier,by which we can do vehicle detection and extract vehicle candidate areas.Meanwhile,uses a crossover re-detection method based on binocular vision to reduce false detection in the algorithm.And adopts a coarse-to-fine stereo matching scheme to improve the accuracy and time performance of binocular distance estimation algorithm.Experimental results show the high accuracy and robustness of the proposed method.
关 键 词:汽车测距 双目视觉 类HAAR特征 交叉再检测 由粗到精
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222