检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:罗可[1] 周安众 罗潇 LUO Ke;ZHOU An-zhong;LUO Xiao(College of Computer and Communication Engineering,Changsha University of Science and Technology,Changsha410114,China)
机构地区:[1]长沙理工大学计算机与通信工程学院,长沙410114
出 处:《控制与决策》2019年第3期511-518,共8页Control and Decision
基 金:国家自然科学基金项目(11671125;71371065;51707013)
摘 要:针对深层卷积神经网络在有限标记样本下训练时存在的过拟合和梯度弥散问题,提出一种从源模型中迁移知识训练一个深层目标模型的策略.迁移的知识包括样本的类别分布和源模型的低层特征,类别分布提供了样本的类间相关信息,扩展了训练集的监督信息,可以缓解样本不足的问题;低层特征包含样本的局部特征,在相关任务的迁移过程中具有一般性,可以使目标模型跳出局部最小值区域.利用这两部分知识对目标模型进行预训练,能够使模型收敛到较好的位置,之后再用真实标记样本进行微调.实验结果表明,所提方法能够增强模型的抗过拟合能力,并提升预测精度.To overcome the overfitting and gradient vanishing of deep convolutional neural networks trained under limited labeled samples, a strategy is proposed to transfer knowledge from a source model to a deep target model. The transferred knowledge includes class distribution of the samples and low-level features of the source model. The class distribution provides class-related information about the samples, which extends the supervised informations of the training set to alleviate the problem of inadequate samples. The low-level feature contains the local characteristics of the samples, which is general in the process of transfer knowledge, and can make the target model jump out of the local minimum value area.Then, the two parts of knowledge are applied to the pre-training target model to make the model converge to a better position, and real labeled samples are used for fine-tuning. The experimental results show that the proposed method can both improve the anti overfitting ability of the model and prediction accuracy.
关 键 词:卷积神经网络 知识迁移 过拟合 梯度弥散 预训练 微调
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222