基于模糊变换的模糊系统及HX方程  

Fuzzy System and HX Differential Equation Based on Fuzzy Transformation

在线阅读下载全文

作  者:董晓梅[1] 袁学海 邓鹄[3] DONG Xiao-mei;YUAN Xue-hai;DENG Hu(School of Information Science and Engineering, Dalian Polytechnic University,Dalian 116034 ,China;School of Science,Dalian University of Technology at Panjin,Panjin 124221,China;School of Control Science anf Engineering, Dalian University of Technology,Dalian 116024 ,China)

机构地区:[1]大连工业大学信息科学与工程学院,辽宁大连116034 [2]大连理工大学盘锦校区基础教学部,辽宁盘锦124221 [3]大连理工大学控制科学与工程学院,辽宁大连116024

出  处:《模糊系统与数学》2019年第1期73-83,共11页Fuzzy Systems and Mathematics

摘  要:本文研究基于模糊变换的模糊系统的构造方法和模糊推理建模法问题。首先,给出了利用单入-单出模糊系统和模糊变换构造双输入-单输出模糊系统的方法,指出这种模糊系统具有泛逼近性,并给出了该模糊系统具有泛逼近性的充分条件。其次,将该模糊系统应用到模糊推理建模法中,得到了一种新的HX方程,泛逼近性定理说明:该HX方程对原系统具有很好的泛逼近性。最后,将得到的新的HX方程应用到自治Lienard系统中,得到了不含一阶导数项的简化HX方程。简化的HX方程将原先逐片求解(m-1)(n-1)个方程,简化为逐片求解m-1个方程,从而降低了计算复杂度。仿真实验说明了新HX方程的有效性。In this paper, the method to construct a fuzzy system and fuzzy inference modeling method are investigated. Firstly, a method to construct the dual input-single output fuzzy system by using a single input-single output fuzzy system and the fuzzy transformation is estabilished. It is pointed that the contructed fuzzy system is an universal approximator and a sufficient condition of the fuzzy system as the universal approximator is proposed. Secondly, we have obtained a new HX differential equation by applying the proposed fuzzy system to fuzzy inference modeling method. The universal approximation theorem of the proposed fuzzy system has shown that the new HX differential equation is of universal approximation to the original system. Finally, by applying the new HX differential equation to automomous Lienard system , we have obtained a simplified HX differential equation which has no first derivation part and change solving (m - 1)(n-1) differential equations into solving m differential equations. The simulation has shown the efficiency of the simplified HX differential equation.

关 键 词:模糊系统 模糊推理 重心法模糊系统 模糊变换 泛逼近性 HX方程 

分 类 号:O159[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象