检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:苗荣慧 黄锋华[1] 杨华[1] 邓雪峰[1] 陈晓倩[2] Miao Ronghui
机构地区:[1]山西农业大学信息科学与工程学院,山西太谷030801 [2]西北农林科技大学信息工程学院,陕西杨凌712100
出 处:《江苏农业科学》2019年第6期174-178,共5页Jiangsu Agricultural Sciences
基 金:国家自然科学基金(编号:31671571);山西农业大学青年科技创新基金(编号:2017013)
摘 要:为实现油桃品种的快速且无损鉴别,对油桃高光谱图像中的光谱和图像信息进行分析。在光谱信息提取中,采用偏最小二乘回归(partial least squares regression,简称PLSR)从全波段光谱数据提取9个特征波长。在图像信息获取中,采用主成分分析(principal component analysis,简称PCA)获得主成分图像,并提取主成分图像的Gabor纹理特征。分别建立基于特征波长光谱特征、主成分图像纹理特征和光谱纹理特征融合的最小二乘支持向量机(least squares support vector machine,简称LS-SVM)和极限学习机(extreme learning machine,简称ELM)油桃品种判别模型。结果表明,基于融合特征的LS-SVM和ELM模型识别率分别为94.7%、92.1%,较单独采用光谱信息和纹理信息的识别率都高,说明采用光谱信息和Gabor纹理信息融合的方法可以实现油桃品种判别,为农产品无损检测提供参考价值。
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.44