检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:高铭 孙仁诚 GAO Ming;SUN Ren-cheng(School of Computer Science and Technology,Qingdao University,Qingdao 266071,China)
机构地区:[1]青岛大学计算机科学技术学院,青岛266071
出 处:《青岛大学学报(自然科学版)》2019年第1期61-65,73,共6页Journal of Qingdao University(Natural Science Edition)
基 金:国家自然科学基金(批准号:41476101)资助
摘 要:在说话人识别系统中,传统梅尔倒频谱系数(MFCC)所提取特征不能够很好的反映说话人动态特征,尤其在噪声环境中,识别率较低,鲁棒性不足。针对以上问题,提出一种基于改进梅尔倒频谱系数(MFCC)的方法,通过多窗谱估计和一阶、二阶差分的方法提升识别性能。实验结果证明,在纯净语音和添加信噪的情况下,改进后方法的识别准确率都有所提升。当训练集为纯净语音,只为测试集添加噪声时,实验结果依然有较高的准确率。In speaker recognition system,the traditional Mel frequency cepstral coefficients(MFCC)can't reflect speaker dynamic characteristics very well.Especially in the noisy environment,the recognition capability and robustness are insufficient.To solve the above issues,an algorithm based on improved Mel frequency cepstral coefficients(MFCC)is proposed.One way that using multiple windows spectral estimation,first-order differential and second-order differential parameters to enhance its recognition capability.Experimental results show that the recognition accuracy of the proposed method has significantly improved in case of pure speech and different signal noise ratios(SNR).Furthermore,when the training set is pure speech and only noise is added to the test set only,the experimental results of the proposed method still have high accuracy.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.17.4.144