检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:洪常春[1] HONG Chang-chun(School of Foreign Languages,Huangshan University,Huangs han,Anhui 245041,China)
机构地区:[1]黄山学院外国语学院,安徽省黄山市245041
出 处:《外语电化教学》2018年第6期29-34,共6页Technology Enhanced Foreign Language Education
基 金:安徽省质量工程项目省级教学团队项目(项目编号:2016jxtd112);安徽省教育厅重点课题“非物质文化遗产的英译及小型汉英语料库的建设与运用--以安徽省为例”(项目编号:SK2016A0878)的部分研究成果。
摘 要:人工智能的迅猛发展给大学英语教学带来了新的发展契机和挑战。本文通过对人工智能、生态语言学以及语言教育中相关概念的解读,探究"智慧教育"理念和大学英语生态教学模式的构建路径。人工智能将在语言学习者的个体差异分析、量身定制的学习内容、多元立体的教学媒体、作为智慧课堂设计者的教师角色以及多维动态的形成性评估等诸多方面大有可为。依托人工智能的数据挖掘技术分析学习者特点,借助技术手段进行智慧课堂设计、促进语言学习者的自主学习、建立动态完备的学习者档案,使语言学习过程不再是一个线性的过程,而是不断演进的开环,最终形成语言学习过程中各种生态位和谐发展的态势。The rapid development of artificial intelligence brings new opportunities and challenges for college English teaching.Through the interpretation of artificial intelligence,ecological linguistics,and language education,this paper explores the concept of "wisdom education" and puts forward an ecological model for college English teaching.Artificial intelligence will play active roles in analyzing inter-learner variation,providing tailored learning contents for individual learners,establishing multi-dimensional teaching medium,facilitating English teachers as designers and guides in "wisdom education",and generating dynamic and formative assessment of the learning process,etc.Within the ecological teaching activity,data mining technology can deeply mine network-based learners’various files and build models and portraits for them;multi-dimensional platforms can enhance learners’autonomous learning;the deep learning function of artificial intelligence can also analyze and evaluate the learning effect through data processing,provide learners with targeted feedback and intervention,and facilitate the development of college English ecological teaching.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3