检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:巩孟林 陈卫[1] 钟也磐 GONG Menglin;CHEN Wei;ZHONG Yepan(Aeronautics Engineering College,Air Force Engineering Universityrsity,Xi'an 710038,China)
出 处:《电子工程学院学报》2019年第3期47-52,共6页Journal of The College of Electronic Engineering
基 金:国家自然科学基金(51175509).
摘 要:针对齿轮早期故障诊断,传统的信号处理方法受噪声干扰大,严重影响了齿轮故障特征提取。结合粒子群(PSO)算法和稀疏分解算法提出PSO稀疏分解,利用PSO在搜索最优解方面的优势降低了稀疏分解的计算复杂度,并提出了"匹配度"作为信号的特征量。通过对模拟信号和某型航空发动机齿轮毂振动信号的分析,证明PSO稀疏分解在强噪声背景下具有很好的稳健性,提高了振动信号的信噪比,能够有效提取齿轮的故障特征,故障信号的"匹配度"比正常信号平均高出0.4左右,与传统方法相比,优势较为明显。As for the fault diagnosis of gear at early stage,the conventional methods of signal processing are significantly interfered by noise,blocking the fault feature extraction of gear.This paper proposes a PSO sparse decomposition combined with PSO(Particle swarm optimization)algorithm and sparse decomposition algorithm,lowering the computing complexity of sparse decomposition,and also proposes a‘Matching index’as the signal feature.The research result of the simulated signal indicates that PSO decomposition performs well under condition of strong noise and improves the SNR greatly.What’s more,the PSO sparse decomposition is proved efficiently in fault signal feature extraction of gear through the analysis of the signal from aero-engine gear hub.The‘Matching index’of fault signal is 0.4 higher equally than that of normal signal.This is superior obviously to the traditional methods.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.147