检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:喻喜平[1] YU Xi-ping(Wuhan Railway Vocational College of Technology,Wuhan 430205,China)
出 处:《山东农业大学学报(自然科学版)》2019年第2期281-284,共4页Journal of Shandong Agricultural University:Natural Science Edition
摘 要:为提高铁路信号运行状态预警的准确率,克服BPNN模型存在收敛速度慢和局部最优的缺点及其性能易受网络的初始权值、阈值等参数选择的影响,本文提出一种基于CAPSO-BPNN的铁路信号运行状态预警模型。结果表明,与PSO-BPNN和BPNN相比较,CAPSO-BPNN模型具有更高的预警准确率和更优的性能,为铁路信号运行状态预警提供了新的方法和途径。In order to improve the precautionary accuracy for railway signal running state and overcome disadvantages of slow convergence speed and local optimization in BPNN model,and its performance was easily affected by the initial weight value and threshold value and so on,this paper proposed a precautionary model based on CAPSO-BPNN for railway signal running state.The results showed that the CAPSO-BPNN model had higher accuracy and better performance than PSO-BPNN and BPNN,which provided new method and approach for forewarning of the operating state of railway signals.
关 键 词:铁路信号 云自适应粒子群优化算法 BP神经网络 运行状态
分 类 号:TP391.1[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28