检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:许春冬[1] 周静 应冬文 龙清华[1] Xu Chundong;Zhou Jing;Ying Dongwen;Long Qinghua(Faculty of Information Engineering,Jiangxi University of Science and Technology,Ganzhou,Jiangxi 341000,China;Key Laboratory of Speech Acoustics and Content Understanding,Institute of Acoustics,Chinese Academy of Sciences,Beijing 100190,China)
机构地区:[1]江西理工大学信息工程学院,江西赣州341000 [2]中国科学院声学研究所语言声学与内容理解重点实验室,北京100190
出 处:《信号处理》2019年第3期410-418,共9页Journal of Signal Processing
基 金:国家自然科学基金(11864016;11704164);江西省文化艺术规划课题(YG2017384);江西省研究生创新专项资金项目(YC2018-S330)
摘 要:为了提高利用梅尔频率倒谱系数(Mel-frequency cepstral coefficients, MFCC)特征向量进行心音信号分类的准确率,本文提出以一种基于独立成分分析(independent component analysis, ICA)及权值优化的MFCC特征向量优化方法。首先,通过消除趋势项、降噪、提取心动周期与基础心音分割等步骤对心音信号预处理;接着,对提取的基础心音信号做Mel频谱变换及倒谱分析提取MFCC特征向量,其中用ICA替代离散余弦变换去除分量间高阶量的相关性,同时采用相关系数为权值优化整体混合矩阵;最后,采用F比衡量特征向量贡献率,并以其为权值优化各维特征向量。通过提取MFCC特征向量采用支持向量机(support vector machine, SVM)的分类器识别第一心音及第二心音,并与人工标注心音状态集进行对比。实验结果表明,基于ICA及权值优化的MFCC特征向量在SVM分类器中识别率得到了有效的提升,且优化算法具备一定抗噪性能。In order to improve the accuracy of heart sound signal classification using the Mel frequency cepstral coefficient(MFCC)feature vector,we have proposed an MFCC feature vector optimization method based on independent component analysis(ICA)and weight optimization.First,the heart sound signal is preprocessed by removing the trend terms,noise reduction,extracting the cardiac cycle and fundamental heart sounds segmentation,etc.Then,the MFCC feature vector is extracted by performing Mel spectrum transform and cepstrum analysis on each extracted fundamental heart sounds.In the process,the discrete cosine transform is replaced by ICA to remove the correlation of high-order quantities between components,and the correlation coefficient is used as the weight to optimize the overall mixing matrix.Finally,the F-ratio is used as the feature vector contribution rate,and each dimension feature vector is optimized with the weight.The first heart sound and the second heart sound are identified by the support vector machine(SVM)classifier by extracting the MFCC feature vector,and compared with the artificially labeled heart sound states set.The experimental results show that the recognition rate of MFCC feature vector based on ICA and weight optimization is effectively improved in SVM classifier,and the optimization algorithm has certain anti-noise performance.
关 键 词:心音 梅尔频率倒谱系数 独立成分分析 权值优化 支持向量机
分 类 号:TN912[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28