机构地区:[1]School of Electronics and Information, Nantong University [2]Research Center for Nano-Device and System, Nagoya Institute of Technology
出 处:《Journal of Semiconductors》2019年第4期43-47,共5页半导体学报(英文版)
基 金:supported by the National Science Foundation of China(No.61504071)
摘 要:AlGaN/GaN metal–insulator–semiconductor high-electron-mobility transistors(MIS-HEMTs) on a silicon substrate were fabricated with silicon oxide as a gate dielectric by sputtering deposition and electron-beam(EB) evaporation. It was found that the oxide deposition method and conditions have great influences on the electrical properties of HEMTs. The low sputtering temperature or oxygen introduction at higher temperature results in a positive equivalent charge density at the oxide/AlGaN interface(Nequ), which induces a negative shift of threshold voltage and an increase in both sheet electron density(ns) and drain current density(ID). Contrarily, EB deposition makes a negative Nequ, resulting in reduced ns and ID. Besides, the maximum transconductance(gm-max) decreases and the off-state gate current density(I_(G-off)) increases for oxides at lower sputtering temperature compared with that at higher temperature, possibly due to a more serious sputter-induced damage and much larger Nequ at lower sputtering temperature. At high sputtering temperature, I_(G-off) decreases by two orders of magnitude compared to that without oxygen, which indicates that oxygen introduction and partial pressure depression of argon decreases the sputter-induced damage significantly. I_(G-off) for EB-evaporated samples is lower by orders of magnitude than that of sputtered ones, possibly attributed to the lower damage of EB evaporation to the barrier layer surface.AlGaN/GaN metal–insulator–semiconductor high-electron-mobility transistors(MIS-HEMTs) on a silicon substrate were fabricated with silicon oxide as a gate dielectric by sputtering deposition and electron-beam(EB) evaporation. It was found that the oxide deposition method and conditions have great influences on the electrical properties of HEMTs. The low sputtering temperature or oxygen introduction at higher temperature results in a positive equivalent charge density at the oxide/AlGaN interface(Nequ), which induces a negative shift of threshold voltage and an increase in both sheet electron density(ns) and drain current density(ID). Contrarily, EB deposition makes a negative Nequ, resulting in reduced ns and ID. Besides, the maximum transconductance(gm-max) decreases and the off-state gate current density(I_(G-off)) increases for oxides at lower sputtering temperature compared with that at higher temperature, possibly due to a more serious sputter-induced damage and much larger Nequ at lower sputtering temperature. At high sputtering temperature, I_(G-off) decreases by two orders of magnitude compared to that without oxygen, which indicates that oxygen introduction and partial pressure depression of argon decreases the sputter-induced damage significantly. I_(G-off) for EB-evaporated samples is lower by orders of magnitude than that of sputtered ones, possibly attributed to the lower damage of EB evaporation to the barrier layer surface.
关 键 词:ALGAN/GAN MIS-HEMTs SPUTTERING deposition ELECTRON-BEAM evaporation silicon OXIDE ELECTRICAL properties
分 类 号:TN32[电子电信—物理电子学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...