检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:彭娟[1] 范周田[1] 杨蓉 PENG Juan;FAN Zhou-tian;YANG Rong(College of Applied Science,Beijing University of Technology,Beijing 100124,China)
出 处:《大学数学》2019年第2期106-109,共4页College Mathematics
摘 要:幂级数是微积分应用的重要理论基础,其中收敛半径的求法是学习相关内容的重点和难点.面向工科的高等数学教学中,通常限于介绍求比较简单的幂级数的收敛半径的方法,对于一般的幂级数,由于涉及上极限的理论,高等数学中不做讨论.本文从有界的角度讨论幂级数的收敛半径问题,避开了上极限问题的困难,所得结果可用于求任意幂级数的收敛半径.Power series is an important theoretical basis for calculus application,in which the way to find the convergence radius is both the key point and difficult point.In the higher Mathematics teaching for engineering students,it is usually limited to the method of a relatively simple power series.For the general power series,it is not discussed in higher mathematics because of the theory involving the upper limit.In this paper,the convergence radius of power series is discussed from the point of view of boundedness,avoiding the difficulty of upper limit problem.The result can be used to find the convergence radius of any power series.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229