检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李世科[1] LI Shike(School of Computer Engineering,Henan Institute of Economics and Trade,Zhengzhou 450046,China)
机构地区:[1]河南经贸职业学院计算机工程学院,河南郑州450046
出 处:《中国矿业》2019年第5期92-96,共5页China Mining Magazine
摘 要:本文提出基于LM-BP神经网络进行液压支架顶梁疲劳寿命预测方法,选取主筋板厚度、柱窝上方中心处横板厚度、两侧横板厚度、导向套筒孔半径、顶板厚度作为输入参量,将样本的液压支架顶梁疲劳寿命作为输出量,在进行训练时采用LM算法对BP神经网络进行改进,得到基于LM的BP神经网络模型,利用该模型进行液压支架顶梁疲劳寿命预测。研究结果表明:基于LM的BP神经网络模型的计算结果与测试样本拟合精度较高,具有广泛的应用前景。The method for predicting the fatigue life of hydraulic support roof beam is presented based on LM-BP neural network in this paper.The main stiffener thickness,the thickness of the transverse plate above the center of the column socket,the thickness of the transverse plates on both sides,the radius of the guide sleeve hole and the thickness of the roof are selected as input parameters,the fatigue life of the sample hydraulic support roof beam is taken as output,LM algorithm is used to improve BP neural network in training,and a BP neural network model based on LM is obtained.The model is used to predict the fatigue life of hydraulic support roof beam.The results show that the fitting accuracy of the BP neural network model based on LM is high,and it has wide application prospects.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28