多宇宙并行量子遗传神经网络人脸识别算法研究  被引量:1

Facial Recognition Algorithm Based on Multi-universe Parallel Quantum Genetic Neural Network

在线阅读下载全文

作  者:李海朋[1] 李晶皎[1] 金硕巍[1] 杨丹[1] LI Hai-peng;LI Jing-jiao;JIN Shuo-wei;YANG Dan(School of Information Science & Engineering,Northeastern University,Shenyang 110819,China)

机构地区:[1]东北大学信息科学与工程学院,辽宁沈阳110819

出  处:《东北大学学报(自然科学版)》2019年第5期614-618,共5页Journal of Northeastern University(Natural Science)

基  金:国家自然科学基金青年基金资助项目(51607029)

摘  要:针对传统遗传算法交叉、变异过程过于繁琐和神经网络在极值判断及收敛速度受限等问题,提出了一种并行的量子遗传算法优化神经网络权值的算法.首先引入了量子计算的概念,在量子计算的过程中使用量子旋门实现染色体的训练,然后引入量子交叉克服了早熟收敛现象,避免了遗传算法中繁琐的交叉、变异过程.最后设计实现了并行的卷积神经网络,使用并行量子遗传算法优化了卷积神经网络权值,实现了并行量子遗传神经网络人脸识别系统.实验结果表明,相对于原来的遗传算法,该算法在鲁棒性和实验速度上都有明显的提高.In order to solve the problem that the process of cross and mutation in traditional genetic algorithm is too cumbersome,and the extreme value judgment and the convergence rate is limited,a parallel quantum genetic algorithm(QGA) is proposed to optimize the weights of the neural network.The concept of quantum computing is firstly introduced.In the process of quantum computation,the quantum rotation gate is used to train the chromosomes.Then the quantum cross is introduced to overcome the precocious convergence and to avoid the cumbersome cross and mutation process in the genetic algorithm.Finally,the parallel convolution neural network is designed and implemented.The parallel quantum genetic algorithm is used to optimize the weights of the convolution neural network,and a facial recognition system based on parallel quantum genetic neural network is realized.Experimental results show that compared with the original genetic algorithm,the quantum genetic neural network algorithm has obvious improvements in terms of robustness and processing speed.

关 键 词:多核并行 量子计算 遗传算法 神经网络 

分 类 号:TP39[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象