检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:黄建荣[1] 印鉴[2] HUANG Jian-rong;YIN Jian(College of Electronic and Information Engineering, Zhuhai City Polytechnic, Zhuhai Guangdong 519090, China;College of Information Science and Technology, Sun Yat-Sen University, Guangzhou 510006、China)
机构地区:[1]珠海城市职业技术学院电子信息工程学院,广东珠海519090 [2]中山大学数据科学与计算机学院,广州510006
出 处:《西南大学学报(自然科学版)》2019年第4期130-138,共9页Journal of Southwest University(Natural Science Edition)
基 金:国家自然科学基金项目(61033010);广东省自然科学基金项目(S011020001182)
摘 要:为了解决当前医学图像融合(Medical Image Fusion, MIF)方法易产生伪影,丢失部分图像细节,以及对比度较低的问题,本文提出了一种新的峰值皮层模型(Spiking Cortical Model, SCM)耦合WLD (Weber Local Descriptor)的图像融合算法.首先,通过SCM对源图像进行分解,获得不同的二进制脉冲图像;其次,利用输出脉冲图像生成点火映射图像,并构建了SCM脉冲输出点火数量的融合准则;然后,结合SCM脉冲输出的信息熵与点火映射图像的Weber局部描述这二者的相似性来计算融合权重,完成图像融合.通过实验表明:与当前常用的MIF算法相比,本文所提算法具有更好的视觉效果,其融合图像质量与对比度更高,同时,在客观评价标准IE,MI,AG,SSIM方面也具有更大的优势,有效地保持了源图像的有效信息.Current medical image fusion (MIF) methods are prone to produce artifacts, lose some image details and have low contrast. In order to overcome these defects, a new image fusion algorithm based on spiking cortical model and Weber local descriptor was designed in this paper. Firstly, different binary pulse images were obtained by using the SCM to decompose the source image. Secondly, a fusion rule of SCM pulse output ignition number was constructed by using the output ignition image to generate an ignition mapping image. Then the image fusion was completed based on the similarity between the entropy of the SCM pulse and Weber local descriptor of the ignition mapping image to calculate the fusion weights. Experiment results showed that compared with the MIF methods which are now widely used, this algorithm has better visual effects and higher fused image quality and contrast. In addition, it has bigger advantage in the objective evaluation criteria as IE, MI,AG and SSIM, for it can effectively preserve the valid information of the source image.
关 键 词:医学图像融合 Weber局部描述 峰值皮层模型 点火映射 信息熵 融合权重
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222