一种基于Halcon的美标电源线缺陷检测方法  被引量:7

A Defects Detection Method for American Standard Power Line Based on Halcon

在线阅读下载全文

作  者:蔡述庭[1] 王雪岩 陈学松[1] 熊晓明[1] CAI Shuting;WANG Xueyan;CHEN Xuesong;XIONG Xiaoming(School of Automation,Guangdong University of Technology,Guangzhou Guangdong 510000,China)

机构地区:[1]广东工业大学自动化学院,广东广州510000

出  处:《机床与液压》2019年第8期134-139,共6页Machine Tool & Hydraulics

基  金:国家自然科学基金青年科学基金项目(61201392);广东省科技计划项目(2017B010124003;2017B090909001)

摘  要:美标电源线是国内电线电缆企业生产的产品之一,因布局合理、电气安全设计规范等优势,在美国、加拿大、巴西等国家和地区广泛使用。目前多数国内生产企业使用的检测方法是人工离线检测和工具检测(如显微镜,投影检测仪等传统设备),这类方法耗费较大人工成本,且精度低,效率不高,并不适用于大规模生产过程。因此急需一种测量精度高、测量速度快的产品检测方法,以满足高质量生产和高效率检测的要求。以美标电源线为研究对象,利用图像处理和机器视觉相关知识,设计一种基于Halcon的美标电源线缺陷检测方法,该方法可以对美标电源线进行较完整的检测,对其各种缺陷有较好的检测效果。American standard power lines are one kind of the products that domestic wires & cables enterprises produced. Due to their reasonable layout, normative electrical safety design and other advantages, American standard power lines are widely used in United States, Canada, Brazil and other countries and regions. At present, the detection methods that most of the domestic wires & cables enterprises use are manual off-line detection and tools detection(such as microscope, projection detector and other traditional equipments,etc). These kinds of method cost large labour with low precision and efficiency,are not applied to mass production. Therefore, a kind of high precision detection method with high speed is needed to meet the requirements of high quality production and high efficiency detection.Taking American standard power lines as the research objects, by using image processing and machine vision knowledge, a set of American standard power line defects detection method based on machine vision was designed. This method has a better effect for American standard power lines on their various defects.

关 键 词:图像处理 机器视觉 美标电源线 缺陷检测 图像分割 模版匹配 

分 类 号:TP207[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象