检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:孙霞[1] 吴楠楠 张蕾[1] 陈静 冯筠[1] SUN Xia;WU Nan-nan;ZHANG Lei;CHEN Jing;FENG Jun(College of Information Science and Technology,Northwest University,Xi'an 710127,China)
机构地区:[1]西北大学信息科学与技术学院,陕西西安710127
出 处:《计算机工程与科学》2019年第5期893-899,共7页Computer Engineering & Science
基 金:陕西省天地网技术重点实验室开放课题基金;陕西省留学人员科技活动择优资助项目(202160002)
摘 要:近年来大规模开放在线课程获得了较为广泛的关注。由于学习者学习方式不合理使得学习兴趣下降,学习效果不佳,MOOCs辍学率很高,针对这一问题,从学习者学习活动日志中自动抽取一段时间内连续特征,以学习者行为特征为自变量,建立MOOCs辍学预测模型。在KDD Cup 2015数据集上的实验表明,使用基于卷积神经网络的长短期记忆CNN_LSTM辍学预测模型,能够帮助MOOCs课程教师和设计者追踪课程学习者在不同时间步长的学习状态,从而动态监控不同阶段的辍学行为,模型的预测准确率高,这将为教师改进教学方法提供更合理的指导和建议。In recent years,massive open online courses (MOOCs) have received extensive attention.Due to the unreasonable learning styles of learners,their interest in learning is declining and some learning effect is not good,so the dropout rate of MOOCs is very high.In order to solve this problem,we automatically extract continuous features over a period of time from learners' learning activity logs,and establish a MOOCs dropout prediction model by taking learners' behavior features as independent variables.Experiments on the KDD Cup 2015 dataset show that the dropout rate prediction model in the long short-term memory in the convolutional neural network (CNN_LSTM) can help MOOCs curriculum teachers and designers track the learning states of course learners at different phases,and dynamically monitor the dropout behavior of different stages.The prediction accuracy of the model is high,so it can provide teachers with more reasonable guidance and advice on improving their teaching methods.
关 键 词:大规模开放式在线课程 辍学预测 时间序列预测 长短期记忆 卷积神经网络
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30