检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王海波[1] 何崇检 贾耀威 WANG Haibo;HE Chongjian;JIA Yaowei(College of Civil Engineering,Central South University,Changsha 410075,China)
出 处:《振动与冲击》2019年第10期43-48,共6页Journal of Vibration and Shock
基 金:国家自然科学基金(50908230)
摘 要:针对线性动力状态方程■,结合泰勒级数展开式和广义精细积分法,提出了一种避免状态矩阵求逆的线性动力分析的通用积分格式。将非齐次项在t_(i+1)=(i=0, 1, 2,…,n)时刻利用泰勒公式将其展开成幂级数形式;结合广义精细积分法中的递推公式即可求解出非齐次项的动力响应。该方法计算格式统一,易于编程,通过选取幂级数的项数,可得到不同的计算精度。与传统的数值积分法相比,该方法具有很高的精度、稳定性及适当的效率,可用于求解任意激励下结构的动力响应。For the state equation v=H·v+r(t)used in describing linear dynamics systems,a general integration scheme was proposed with the combination of the Taylor series expansion and generalized precise time step integration method.The non-homogenous term at the moment of ti+1(i=0,1,2,…,n)was developed into a power series by the Taylor formula,and then the dynamic response due to the non-homogenous term was solved by introducing the recursive formula in the generalized precise time step integration method.The algorithm has an uniform computing scheme,which makes the programming simpler.Moreover,the different calculation accuracy can be obtained by selecting the term number of power series.Compared with the traditional numerical integration method,the proposed algorithm has higher precision,better stability and proper efficiency.Therefore,it can be used to solve the dynamic response of a structure under arbitrary excitation.
关 键 词:线性动力分析 精细积分法 泰勒级数 递推算法 通用格式
分 类 号:O321[理学—一般力学与力学基础]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15